1
|
Li M, Du S, Xiao Y, Wu Y, Zhong K, Huang Y, Gan R, Gao H. Enhancing the quality of dark tea through fermentation with Aspergillus niger: Unveiling aroma and taste characteristics. Food Microbiol 2025; 128:104721. [PMID: 39952746 DOI: 10.1016/j.fm.2025.104721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
Amidst the increasing demand for premium dark tea, the utilization of Aspergillus niger-inoculated fermentation has emerged as a potential solution to address the challenges associated with extended processing cycles and inconsistent quality. This study comprehensively investigated the efficacy and mechanisms of A. niger PW-2 inoculation in enhancing dark tea quality compared to spontaneous fermentation, using metabolomics, electronic tongue, molecular docking, and high-throughput sequencing. A. niger PW-2 shaped the fungal community within 7 days, degrading terpene glycosides and lactones while generating terpenoids and unsaturated fatty acids, which enriched the floral aroma of PW-2-inoculated fermentation dark tea (AF). Flavonoid degradation and reduced theaflavins/thearubigins levels in AF decreased astringency, while increased bitter dipeptides and isoflavonoids enhanced bitterness, and the accumulation of umami dipeptides and theabrownins improved umami taste perception of AF. Molecular docking identified key compounds responsible for astringency (kaempferol glycosides), bitterness (6″-caffeoylisoorientin, kaempferol 4'-glucoside 7-rhamnoside, dihydrodaidzein 7-O-glucuronide), and umami (3-O-p-trans-coumaroylalphitolic acid, dihydrodaidzein 7-O-glucuronide, 1-methoxyphaseollidin). Overall, A. niger PW-2 inoculation accelerates fermentation process and enhances flavor characteristics of dark tea, offering a promising approach for high-quality dark tea production.
Collapse
Affiliation(s)
- Maoyun Li
- Huaxi MR Research Center, Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sicheng Du
- International Department of Chengdu Shude High School, Chengdu, 670041, China
| | - Yue Xiao
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yanping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Kai Zhong
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Yina Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Renyou Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Zhang S, Hua J, Niu L, Yuan H, Chen L, Shan X, Zhang Q, Feng Y, Zhou Q, Jiang Y, Li J. Lipidomic profiles of shaking-withering black tea and their metabolic conversion during tea processing. Food Chem 2025; 472:142924. [PMID: 39837181 DOI: 10.1016/j.foodchem.2025.142924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Shaking-withering is a new technique in black tea manufacturing, which enables promoting aroma quality. Lipids are important tea aroma precursors. However, the lipids metabolism and its contribution to aroma formation of shaking-withering black tea (SBT) remain unknown. Herein, 436 lipids and 45 fatty acid-derived volatiles (FADVs) and their dynamic changes during SBT processing were investigated. Among them, 113 lipids and 29 FADVs (mainly floral/fruity fatty aldehydes and esters) were screened as critical compounds associated with shaking-withering. Key enzymes PLA, LOX and HPL showed enhanced activity/expression in SBT. Degradation of glycerophospholipids, glycoglycerolipids, and fatty acids were annotated as potential lipid metabolism pathways. Particularly, glycoglycerolipids containing 18:2, 18:3 fatty acyls, e.g., MGDG(18:2/18:3), DGDG(18:3/18:3), showed most predominate degradation after shaking and negative correlation with FADVs, and were highlighted as key potential aroma precursors in SBT. These results demonstrated that shaking may trigger greater glycoglycerolipids degradation and FADVs formation, contributing to SBT aroma improvement.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjie Hua
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Linchi Niu
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Le Chen
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xujiang Shan
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qianting Zhang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Yuning Feng
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jia Li
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
3
|
Li W, Yi L, Gu Y, Ren D, Dong W. Investigation on the Lipid Profile of Ripened Pu-erh Tea and Relationships Between Their Changes and Key Aromatic Volatiles. J Sep Sci 2025; 48:e70133. [PMID: 40226889 DOI: 10.1002/jssc.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Ripened Pu-erh tea is a special tea with unique flavor and obtained by solid fermentation of microorganisms. This work aimed to investigate the changes of lipid metabolites during fermentation and the association between lipids and the aroma of ripened Pu-erh tea based on ultra-high-performance liquid chromatography-high resolution mass spectrometry and GC-MS. A total of 217 lipids and lipid-soluble substances covering 19 subclasses were detected and characterized. Compared with green tea, black tea, and raw Pu-erh tea, ripened Pu-erh tea showed the highest levels of fatty acids. The contents of 36 lipids varied remarkably with fermentation time, and thus these compounds were screened as differential metabolites. These changes were mainly caused by the degradation of glycerophospholipids (folds change: 0.48-0.13) and the formation of fatty acids (folds change: 5.2-11.2). Results of Pearson correlation analysis showed that a few of the aromatic volatiles, including 2-octenal, 3,5-octadien-2-one, 2,4-heptadienal, and 2,6-nonadienal showed obvious negative correlations with phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, but significant positive correlations with fatty acids 18:2 and 18:1. This study provided a further understanding of the lipid composition of ripened Pu-erh and their changes during tea production.
Collapse
Affiliation(s)
- Wenting Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, People's Republic of China
| |
Collapse
|
4
|
Wang X, She Z, Zhou H, An T, Teng J, Xia N, Zhu P, Liu W, Dong H, Tang L, You S, Wei L, Li K, Wang L, Huang L, Zhang Q. Characterisation of the phytochemical and bioactivity profiles of raw tea, stale-aroma, and betelnut-aroma type of Liupao tea through GC/LC-MS-based metabolomics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:562-575. [PMID: 39668786 DOI: 10.1039/d4ay01672f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Liupao tea (LPT) is a Chinese dark tea known to possess a unique flavour. Microbial fermentation plays a crucial role in flavour development and enrichment. Currently, the phytochemical profiles and bioactivities of LPT with and without fermentation are not fully known. In this study, we compared the chemical composition of raw tea (SF), stale-aroma (SA), and betelnut-aroma (BA) type LPT through the application of GC/LC-MS-based metabolomics, and experimentally investigated their bioactivities via antioxidant, anti-inflammatory, hypolipidemic, and hypoglycemic assays in vitro. The results indicated that fermentation enhanced the flavour of LPT as evidenced by the sweetness-producing substances, decreased bitterness and astringency-related compounds and enriched abundance of aroma-generating compounds. Two and four volatiles were detected to be major contributors to the aroma in SA and BA, respectively. Fatty acids and phosphatidylcholines were the primary lipids, among which the lysing diacylglycerol trimethyl homoserines were found to be a new class of lipids in LPT. Notably, the fermentation resulted in the degradation of compounds, particularly glycerophospholipids and saccharolipids. SF had the highest level of bioactivity, followed by BA and SA. These findings expand the present understanding regarding the development of flavour, nutrition, and medicinal value of LPT. Moreover, they provide a theoretical basis for the identification of BA and SA and serve as a reference value for consumers in their selection of LPT products.
Collapse
Affiliation(s)
- Xuancheng Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhiyong She
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Hailin Zhou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Tingting An
- Urumqi Youai Hospital, Urumqi, Xinjiang 830000, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenhui Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Huanxiao Dong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Limin Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Shulan You
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Lu Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Kongying Li
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Lingli Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Qisong Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
- Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
5
|
Wen M, Hu W, Li L, Long P, Han Z, Ke JP, Deng Z, Zhu M, Zhang L. Developed metabolomics approach reveals the non-volatile color-contributing metabolites during Keemun congou black tea processing. Food Chem 2025; 463:141222. [PMID: 39270495 DOI: 10.1016/j.foodchem.2024.141222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
While key aroma and taste compounds of Keemun Congou black teas (KCBT) form during aeration and thermal stages, it is still unknown whether these processing stages also produce non-volatile color-contributing metabolites. Through integrating metabolomics with correlation and ridge regression analyses, 190 metabolites were identified as marker compounds that reclassified 15 KCBT samples collected from five processing stages into four groups. Meanwhile, the results of quantification and heatmap analysis showed that the concentrations of theaflavins and theasinensins significantly increased, as catechin decreased, after rolling, while flavonoid aglycones and polyunsaturated fatty acids increased throughout drying. Regression analysis between marker compound levels and total color difference values (∆E) revealed that the major color contributors were 3,5-dicaffeoylquinic acid, glucosyl-dehydrodigallic acid, theacitrin A, kaempferol-O-robinobioside, and (-)-epigallocatechin, with regression coefficients (absolute value) exceeding 4 × 10-2. Overall, the present study confirmed that rolling and drying were the two vital stages responsible for the color formation of KCBT.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Wei Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Lu Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zhiyang Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Chen L, Zhang S, Feng Y, Jiang Y, Yuan H, Shan X, Zhang Q, Niu L, Wang S, Zhou Q, Li J. Seasonal variation in non-volatile flavor substances of fresh tea leaves (Camellia sinensis) by integrated lipidomics and metabolomics using UHPLC-Q-Exactive mass spectrometry. Food Chem 2025; 462:140986. [PMID: 39208737 DOI: 10.1016/j.foodchem.2024.140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Harvest season exerts great influence on tea quality. Herein, the variations in non-volatile flavor substances in spring and summer fresh tea leaves of four varieties were comprehensively investigated by integrating UHPLC-Q-Exactive based lipidomics and metabolomics. A total of 327 lipids and 99 metabolites were detected, among which, 221 and 58 molecules were significantly differential. The molecular species of phospholipids, glycolipids and acylglycerolipids showed most prominent and structure-dependent seasonal changes, relating to polar head, unsaturation and total acyl length. Particularly, spring tea contained higher amount in aroma precursors of highly unsaturated glycolipids and phosphatidic acids. The contents of umami-enhancing amino acids and phenolic acids, e.g., theanine, theogallin and gallotannins, were increased in spring. Besides, catechins, theaflavins, theasinensins and flavone/flavonol glycosides showed diverse changes. These phytochemical differences covered key aroma precursors, tastants and colorants, and may confer superior flavor of black tea processed using spring leaves, which was verified by sensory evaluation.
Collapse
Affiliation(s)
- Le Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shan Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Yuning Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xujiang Shan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qianting Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Linchi Niu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shengnan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jia Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
7
|
Mao YL, Wang JQ, Wang F, Cao QQ, Yin JF, Xu YQ. Effect of different drying temperature settings on the color characteristics of Tencha. Food Chem X 2024; 24:101963. [PMID: 39582648 PMCID: PMC11584762 DOI: 10.1016/j.fochx.2024.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Color is critical factor in the commercialization of Matcha. In this study, sensory evaluation, color difference analysis, as well as targeted and non-targeted analyses were employed to investigate the impact of different drying temperature settings on the color characteristics of Tencha. The findings revealed that compared to a single drying temperature setting, a two-stage or multi-stage drying process more effectively preserved the color quality of Tencha. Specifically, a setting involving an initial period of high-temperature drying followed by low-temperature drying (samples T_6, T_7, T_10, and T_13) resulted in superior tea color quality, characterized by higher chlorophyll content and lower levels of lutein and β-carotene. Chemometric analysis identified chlorophylls and their derivatives (chlorophyll a/b, pheophytin a/b, pyropheophytin a/b) as the key factors influencing Tencha's color. These results can provide valuable insights for optimizing tea processing methods to enhance quality.
Collapse
Affiliation(s)
- Ya-Lin Mao
- Modern Agricultural institute, Jiaxing Vocational & Technical College, Jiaxing 314036, China
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Jie-Qiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Qing-Qing Cao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
8
|
Wang H, Chen L, Xu A, Zhao Y, Wang Y, Liu Z, Xu P. Thermochemical reactions in tea drying shape the flavor of tea: A review. Food Res Int 2024; 197:115188. [PMID: 39593398 DOI: 10.1016/j.foodres.2024.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Drying is the final and essential step in tea processing. It contributes a lot to the formation of tea flavor quality by a series of complicated and violent thermochemical reactions, such as degradation reaction, Maillard reaction, redox reaction, isomerization reaction, etc. However, the mechanism of specific thermochemical reaction is unclear. Here, by comprehensively summarizing the thermochemical reactions of the main chemicals, including polyphenols, lipids, amino acids and carbohydrates, etc., during tea drying with particularly focus on their contributions of thermal drying on the flavor including color, aroma, and taste, we found that thermal degradation is the dominant thermochemical reaction, directly affecting the taste and color of tea, and thermal oxidation of lipids and Maillard reaction mainly contribute to form tea aroma. More interesting was that high temperature enhanced nucleophilicity of phenolics, allowing them to easily trap carbonyl substances to form small molecular adducts (i.e. EPSFs) or polymers, which could interfere other thermochemical reactions, and then alter the flavor quality of tea. Over all, this review provides updated scientific evidence for in-depth exploration of thermochemical reactions towards tea precision processing.
Collapse
Affiliation(s)
- Huajie Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yueling Zhao
- Department of Tea Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Zhonghua Liu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Li Y, Wan Y, Chen Z, Wang T, Fu X, Zhao Y, Liu W, Wei C. Effects of different processing methods on the lipid composition of seabuckthorn fruit oil based on lipidomics. J Food Sci 2024; 89:7613-7625. [PMID: 39327608 DOI: 10.1111/1750-3841.17409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Employing lipidomics, this study investigated the lipid composition of seabuckthorn fruit oil processed via supercritical CO2 extraction and centrifugal separation. Qualitative analysis showed that a total of 2861 lipid molecules were identified in seabuckthorn fruit oil. Quantitative analysis showed that the content of lipids in seabuckthorn fruit oil extracted by supercritical CO2 extraction (927,539.84 µg/mL) was significantly higher than that in centrifugal-separated seabuckthorn fruit oil (735,717.63 µg/mL), with 17 distinct lipid classes and 215 lipid molecules differentiated through multivariate statistical analysis. Lipid molecules, such as diacylglycerol (DG), ceramides (Cer), monohexosyl ceramide, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and monogalactosyl DG, were predominantly found in the oil extracted using supercritical CO2. In contrast, monogalactosyl monoacylglycerol, diglycosyl ceramide, and Cer phosphate were significantly present in the oil extracted by centrifugal separation. These findings contribute new insights into how processing methods affect the quality and composition of seabuckthorn fruit oil and provide a basis for detecting oil adulteration.
Collapse
Affiliation(s)
- Yazhuan Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
| | - Yilai Wan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
| | - Zhanglian Chen
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
| | - Ting Wang
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
| | - Xizhe Fu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
| | - Yue Zhao
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
| | - Wenyu Liu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
| | - Changqing Wei
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, P. R. China
| |
Collapse
|
10
|
Ni Z, Chen W, Pan H, Xie D, Wang Y, Zhou J. Biochemical insights into tea foam: A comparative study across six categories. Food Chem X 2024; 23:101596. [PMID: 39040147 PMCID: PMC11261299 DOI: 10.1016/j.fochx.2024.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Tea foam properties, crucial indicators of tea quality, have gained renewed interest due to their potential applications in innovative beverages and foods. This study investigated the foaming properties and chemical foundations of six major tea categories through morphological observations and biochemical analyses. White tea exhibited the highest foaming ability at 56.28%, while black tea showed the best foam stability at 84.01%. Conversely, green tea had the lowest foaming ability (10.83%) and foam stability (54.24%). These superior foaming characteristics are attributed to the relatively low lipid content and acidic pH values. Surprisingly, no significant correlation was found between tea saponin content and foaming properties. Instead, specific amino acids (including Tyr, Gaba, Phe, Ile, and Leu) and catechins (GA and CG) were identified as potential contributors. These results deepen our understanding of tea foam formation and offer insights into utilizing tea-derived plant-based foams in food products.
Collapse
Affiliation(s)
- Zixin Ni
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongjing Pan
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dengchao Xie
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jihong Zhou
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Zhang S, Chen L, Niu L, Yuan H, Shan X, Zhang Q, Feng Y, Zhou Q, Jiang Y, Li J. New insights into the role of lipids in aroma formation during black tea processing revealed by integrated lipidomics and volatolomics. Curr Res Food Sci 2024; 9:100910. [PMID: 39569005 PMCID: PMC11577132 DOI: 10.1016/j.crfs.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/22/2024] Open
Abstract
Lipids are important tea aroma precursors. Due to the complexity of black tea processing involving both enzymatic and thermal reactions, the role of lipids in black tea aroma formation remained unclear. Herein, the dynamic changes of lipids and volatiles during black tea processing were simultaneously analyzed by lipidomics and volatolomics using ultra-high-performance liquid chromatography coupled to Q-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive) and gas chromatography-tandem mass spectrometry (GC-MS/MS). The lipidomics method was validated in linearity, reproducibility, and recovery, which showed a high reliability. A total of 374 lipids and 88 volatiles were detected. Among them, 362 lipids and 29 fatty acid-derived volatiles (FADVs) were significantly altered depending on different processing stages. During the enzyme-driven stages of black tea processing (withering, rolling and fermentation), monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) were largely downregulated (<0.33 folds). Instead, in the non-enzymatic drying steps of black tea processing, triacylglycerol (TG), diacylglycerol (DG), and phosphatidic acid (PA) were mainly degraded (<0.24 folds). MS/MS fragmentation revealed that these most prominently degraded lipids were structurally enriched with fatty acyl (FA) 18:2 and 18:3 residues, such as MGDG (18:2/18:3), PC (18:2/18:2), PE (18:1/18:2), TG (18:3/18:3/18:3), DG (18:3/18:3), PA (18:3/18:3). Correlation analysis showed significant negative correlation between these lipids and FADVs such as aliphatic aldehydes, alcohols, ketones, and esters, etc. These most prominently degraded lipids were highlighted as the key potential aroma precursors during black tea processing, which were possibly oxidized and degraded into volatiles through enzyme- and thermal-driven pathways at different processing stages.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Le Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Linchi Niu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Xujiang Shan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Qianting Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Yuning Feng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jia Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| |
Collapse
|
12
|
Chen QY, Liu ML, Li RY, Jiang B, Liu KY, Xiao YQ, Wang Q, Wang T, Zhao LQ, Wang WT, Liu ZW, Chen LJ, Ma Y, Zhao M. Changes in lipids and medium- and long-chain fatty acids during the spontaneous fermentation of ripened pu-erh tea. Curr Res Food Sci 2024; 9:100831. [PMID: 39281340 PMCID: PMC11402406 DOI: 10.1016/j.crfs.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
During the fermentation of ripened pu-erh tea (RPT), the composition of lipids and other compounds changes significantly. In this study, we conducted industrial fermentation of RPT and observed that the levels of water extract, tea polyphenols, free amino acids, catechins, caffeine, rutin, theophylline, luteolin, and myricetin decreased, while the level of soluble sugar increased. Additionally, the levels of gallic acid, quercetin, ellagic acid, and kaempferol first increased and then decreased during fermentation. We identified a total of 731 lipids, which were classified into seven categories using a lipomics method. Among these lipids, 85 with relatively high contents decreased, while 201 lipids with low contents increased after fermentation. This led to an overall decrease in the sum contents of lipids and dominant lipids, including glycerophospholipids and saccharolipids. We also detected 33 medium- and long-chain fatty acids, with α-linolenic acid (881.202 ± 12.13-1322.263 ± 19.78 μg/g), palmitic acid (797.275 ± 19.56-955.180 ± 30.49 μg/g), and linoleic acid (539.634 ± 15.551-706.869 ± 12.14 μg/g) being the predominant ones. Coenzymes Q9 (62.76-63.57 μg/g) and Q10 (50.82-59.33 μg/g) were also identified in the fermentation process. Our findings shed light on the changes in lipids during the fermentation of RPT and highlight the potential bio-active compounds, such as α-linolenic acid, linoleic acid, Coenzymes Q9, and Q10, in ripened pu-erh tea. This contributes to a better understanding of the fermentation mechanism for RPT.
Collapse
Affiliation(s)
- Qiu-Yue Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming-Li Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Research Institute of Tea Industry, Yibi, Sichuan 644000, China
| | - Ruo-Yu Li
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Bin Jiang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- College of Wuliangye Technology and Food Engineering & College of Modern Agriculture, Yibin Vocational and Technical College, Yibin 644003, China
| | - Kun-Yi Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- College of Wuliangye Technology and Food Engineering & College of Modern Agriculture, Yibin Vocational and Technical College, Yibin 644003, China
| | - Yan-Qin Xiao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qi Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Teng Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Lian-Qin Zhao
- Xiaguan Tuocha (Group) Co., Ltd, Dali, Yunnan 671000, China
| | - Wei-Tao Wang
- Xiaguan Tuocha (Group) Co., Ltd, Dali, Yunnan 671000, China
| | - Zhi-Wei Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Li-Jiao Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yan Ma
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| |
Collapse
|
13
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
14
|
Lu L, Liu J, Zhang W, Cheng X, Zhang B, Yang Y, Que Y, Li Y, Li X. Key Factors of Quality Formation in Wuyi Black Tea during Processing Timing. Foods 2024; 13:1373. [PMID: 38731743 PMCID: PMC11083133 DOI: 10.3390/foods13091373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
As the most consumed tea in the world, all kinds of black tea are developed from Wuyi black tea. In this study, quality components, regulatory gene expression, and key enzyme activity during the processing were analyzed to illustrate the taste formation of WBT. Withering mainly affected the content of amino acids, while catechins and tea pigments were most influenced by rolling and the pre-metaphase of fermentation. Notably, regulatory gene expression was significantly down-regulated after withering except for polyphenoloxidase1, polyphenoloxidase2, leucoanthocyanidin dioxygenase, chalcone isomerase, and flavonoid 3', 5'-hydroxylase. Co-expression of flavonoid pathway genes confirmed similar expression patterns of these genes in the same metabolic pathway. Interestingly, rolling and fermentation anaphase had a great effect on polyphenol oxidase, and fermentation pre-metaphase had the greatest effect on cellulase. Since gene regulation mainly occurs before picking, the influence of chemical reaction was greater during processing. It was speculated that polyphenol oxidase and cellulase, which promoted the transformation of quality components, were the key factors in the quality formation of WBT. The above results provide theoretical basis for the processing of WBT and the reference for producing high-quality black tea.
Collapse
Affiliation(s)
- Li Lu
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
- Tea Engineering Research Center of Fujian Higher Education, Wuyishan 354300, China
- Tea Science Research Institute, Wuyi University, Wuyishan 354300, China
| | - Jinxian Liu
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Wenneng Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Xi Cheng
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
- Tea Engineering Research Center of Fujian Higher Education, Wuyishan 354300, China
- Tea Science Research Institute, Wuyi University, Wuyishan 354300, China
| | - Bo Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
- Tea Engineering Research Center of Fujian Higher Education, Wuyishan 354300, China
- Tea Science Research Institute, Wuyi University, Wuyishan 354300, China
| | - Yiyang Yang
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanhua Li
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
- Tea Engineering Research Center of Fujian Higher Education, Wuyishan 354300, China
- Tea Science Research Institute, Wuyi University, Wuyishan 354300, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Cai X, Wu J, Lian Y, Yang S, Xue Q, Li D, Wu D. Characterization and Discrimination of Marigold Oleoresin from Different Origins Based on UPLC-QTOF-MS Combined Molecular Networking and Multivariate Statistical Analysis. Metabolites 2024; 14:225. [PMID: 38668353 PMCID: PMC11051770 DOI: 10.3390/metabo14040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Marigold oleoresin is an oil-soluble natural colorant mainly extracted from marigold flowers. Xinjiang of China, India, and Zambia of Africa are the three main production areas of marigold flowers. Therefore, this study utilized ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) technology, combined with Global Natural Products Social Molecular Networking (GNPS) and multivariate statistical analysis, for the qualitative and discriminant analysis of marigold oleoresin obtained from three different regions. Firstly, 83 compounds were identified in these marigold oleoresin samples. Furthermore, the results of a principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) indicated significant differences in the chemical compositions of the marigold oleoresin samples from different regions. Finally, 12, 23, and 38 differential metabolites were, respectively, identified by comparing the marigold oleoresin from Africa with Xinjiang, Africa with India, and Xinjiang with India. In summary, these results can be used to distinguish marigold oleoresin samples from different regions, laying a solid foundation for further quality control and providing a theoretical basis for assessing its safety and nutritional aspects.
Collapse
Affiliation(s)
- Xingfu Cai
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Juanjuan Wu
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
- Key Laboratory of Comprehensive Utilization of Plant Resources in Hebei Province, Handan 057250, China
| | - Yunhe Lian
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Shuaiyao Yang
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Qiang Xue
- Chenguang Biological Technology Group HanDan Co., Ltd., Handan 056000, China
| | - Dewang Li
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Di Wu
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
- Key Laboratory of Comprehensive Utilization of Plant Resources in Hebei Province, Handan 057250, China
| |
Collapse
|
16
|
Chen Q, Fu Y, Heng W, Yu S, Xie F, Dong F, Lin Z, Dai W, Fu H. Re-rolling treatment in the fermentation process improves the taste and liquor color qualities of black tea. Food Chem X 2024; 21:101143. [PMID: 38312489 PMCID: PMC10837478 DOI: 10.1016/j.fochx.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Fermentation is a vital process occurred under the premise of rolling affecting black tea quality. Theoretically, re-rolling during fermentation will remodel the biochemical conditions of tea leaves, and thus influence black tea quality. Herein, we studied the effect of re-rolling on black tea taste and liquor color. Sensory evaluation showed that re-rolling significantly weakened the astringency taste and improved the redness and luminance of liquor. With re-rolling, the color attributes of a* and L* and the contents of theaflavins and thearubigins were significantly improved. Metabolomics analysis showed that the contents of 110 non-volatile compounds were significantly different among black teas with different rolling treatments. In summary, re-rolling accelerated the oxidation of polyphenols into pigments, the hydrolysis of proteins into amino acids, and the metabolism of alkaloids, organic acids, glycosidically-bound volatiles, and lipids during the fermentation period. Our study provided a novel and simple way to improve black tea quality.
Collapse
Affiliation(s)
- Qincao Chen
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Xinjian District, Nanchang, Jiangxi Province 330045, China
| | - Ying Fu
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Xinjian District, Nanchang, Jiangxi Province 330045, China
| | - Wenting Heng
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Xinjian District, Nanchang, Jiangxi Province 330045, China
| | - Shuai Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, West Lake District, Hangzhou, Zhejiang Province 310008, China
| | - Feng Xie
- Horticulture Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Avenue, Nanchang County, Nanchang, Jiangxi Province 330200, China
| | - Fang Dong
- Horticulture Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Avenue, Nanchang County, Nanchang, Jiangxi Province 330200, China
| | - Zhi Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, West Lake District, Hangzhou, Zhejiang Province 310008, China
| | - Weidong Dai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, West Lake District, Hangzhou, Zhejiang Province 310008, China
| | - Haihui Fu
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Xinjian District, Nanchang, Jiangxi Province 330045, China
| |
Collapse
|
17
|
Huang FF, Yang PD, Bai SL, Liu ZH, Li J, Huang JA, Xiong LG. Lipids: A noteworthy role in better tea quality. Food Chem 2024; 431:137071. [PMID: 37582323 DOI: 10.1016/j.foodchem.2023.137071] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023]
Abstract
New shoots from tea plants (Camellia sinensis) are changed into finished tea after the process, which endows the products with a characteristic flavor. Tea quality is reflected in all aspects, from new shoots to the finished tea that are affected by cultivar, cultivation condition, harvest season, manufacturing methods, and quality of fresh tea leaves. Lipids are hydrophobic metabolites connected with tea flavor quality formation. Herein, we emphasize that the lipids composition in preharvest tea leaves is crucial for materials quality and hence tea flavor. The characterization of lipids in preharvest tea leaves provides a reference to obtain better tea quality. Lipids transformation in postharvest stages of tea leaves differs from varieties of tea types, and lipid oxidations functions in the tea flavor formation. A comprehensive overview of the lipids in tea leaves of preharvest and postharvest stages is necessary to improve tea quality.
Collapse
Affiliation(s)
- Fang-Fang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Pei-Di Yang
- Tea Research Institute of Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| | - Si-Lei Bai
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhong-Hua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Juan Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Jian-An Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Li-Gui Xiong
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
18
|
Ma Y, Yao J, Zhou L, Zhao M, Wang W, Liu J, Marchioni E. Comprehensive untargeted lipidomic analysis of sea buckthorn using UHPLC-HR-AM/MS/MS combined with principal component analysis. Food Chem 2024; 430:136964. [PMID: 37531917 DOI: 10.1016/j.foodchem.2023.136964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Sea buckthorn is an important ecological and economic plant which has multiple bioactivities. The fruits and seeds of sea buckthorn are rich in oil. However, there are few studies on the differences of lipid profiles of sea buckthorn varieties. Herein, the lipidomic fingerprints of sea buckthorn was established. First, a mixture solvent of methanol and chloroform (2:1, v/v) was selected to extract the lipid of the flesh and seed of sea buckthorn. Then, global lipidomic analysis of different varieties of sea buckthorn was conducted. A total of 16 lipid classes and 112 lipid molecular species were determined. Several molecular species, such as PE (phosphatidylethanolamine) 18:1/18:3, PE18:0/18:1, PE18:0/18:2, etc. were selected as the potential biomarkers to classify the samples. Our study provides a scientific basis for quality control of sea buckthorn and promotes the development of sea buckthorn oil.
Collapse
Affiliation(s)
- Yue Ma
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
19
|
Xue J, Liu P, Feng L, Zheng L, Gui A, Wang X, Wang S, Ye F, Teng J, Gao S, Zheng P. Insights into the effects of fixation methods on the sensory quality of straight-shaped green tea and dynamic changes of key taste metabolites by widely targeted metabolomic analysis. Food Chem X 2023; 20:100943. [PMID: 38144758 PMCID: PMC10740047 DOI: 10.1016/j.fochx.2023.100943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/26/2023] Open
Abstract
Fresh leaves of Echa 1 were fixed by roller, steam/hot air and light-wave, and the effects of the three fixation methods on the chemical characteristics of straight-shaped green teas (GTs) were studied by widely targeted metabolomic analysis. 1001 non-volatile substances was identified, from which 97 differential metabolites were selected by the criteria of variable importance in projection (VIP) > 1, p < 0.05, and |log2(fold change)| > 1. Correlation analysis indicated that 14 taste-active metabolites were the major contributors to the taste differences between differently processed GTs. High-temperature fixation induces protein oxidation or degradation, γ-glutamyl peptide transpeptidation, degradation of flavonoid glycosides and epimerization of cis-catechins, resulting in the accumulation of amino acids, peptides, flavonoids and trans-catechins, which have flavor characteristics such as umami, sweetness, kokumi, bitterness and astringency, thereby affecting the overall taste of GTs. These findings provided a scientific basis for the directional processing technology of high-quality green tea.
Collapse
Affiliation(s)
- Jinjin Xue
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Panpan Liu
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Lin Feng
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Lin Zheng
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Anhui Gui
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Xueping Wang
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Shengpeng Wang
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Fei Ye
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Jing Teng
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Shiwei Gao
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Pengcheng Zheng
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| |
Collapse
|
20
|
Chen Q, Yu P, Li Z, Wang Y, Liu Y, Zhu Y, Fu H. Re-Rolling Treatment in the Fermentation Process Improves the Aroma Quality of Black Tea. Foods 2023; 12:3702. [PMID: 37835355 PMCID: PMC10572315 DOI: 10.3390/foods12193702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Aroma is a vital factor influencing tea quality and value. It is a challenge to produce a kind of black tea with a floral/fruity aroma, good taste, and without a green/grassy odor simultaneously using small- and medium-leaf tea species. In this study, the effect of re-rolling treatment on the aroma quality of small-leaf Congou black tea was investigated using the methods of the equivalent quantification of aroma and gas chromatography-mass spectrometry (GC-MS). Sensory evaluation showed that re-rolling treatment improved the aroma quality of Congou black tea by conferring upon it floral and fruity scents. In total, 179 volatile compounds were identified using GC-MS, of which 97 volatiles showed statistical differences (Tukey s-b(K), p < 0.05). Re-rolling treatment significantly reduced the levels of alcoholic fatty acid-derived volatiles (FADVs) and volatile terpenoid (VTs), but increased the levels of aldehydic and ester FADVs, most amino acid-derived volatiles (AADVs), carotenoid-derived volatiles (CDVs), alkene VTs, and some other important volatile compounds. Based on the odor characteristics and fold changes of differential volatile compounds, hexanoic acid, hexyl formate, cis-3-hexenyl hexanoate, (Z)-3-hexenyl benzoate, hexyl hexanoate, phenylacetaldehyde, benzyl alcohol, β-ionone, α-ionone, dihydroactinidiolide, ipsenone, β-farnesene, β-octalactone, melonal, etc., were considered as the potential key odorants responsible for the floral and fruity scents of re-rolled black tea. In summary, this study provides a novel and simple processing technology to improve the aroma quality of small-leaf Congou black tea, and the results are beneficial to enriching tea aroma chemistry.
Collapse
Affiliation(s)
- Qincao Chen
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China; (Q.C.); (Z.L.); (Y.W.); (Y.L.)
| | - Penghui Yu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, No. 702 Yuanda 2nd Road, Changsha 410125, China;
| | - Ziyi Li
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China; (Q.C.); (Z.L.); (Y.W.); (Y.L.)
| | - Yuhang Wang
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China; (Q.C.); (Z.L.); (Y.W.); (Y.L.)
| | - Yafang Liu
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China; (Q.C.); (Z.L.); (Y.W.); (Y.L.)
| | - Yin Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Hangzhou 310008, China
| | - Haihui Fu
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China; (Q.C.); (Z.L.); (Y.W.); (Y.L.)
| |
Collapse
|
21
|
Shan X, Yu Q, Chen L, Zhang S, Zhu J, Jiang Y, Yuan H, Zhou Q, Li J, Wang Y, Deng Y, Li J. Analyzing the influence of withering degree on the dynamic changes in non-volatile metabolites and sensory quality of Longjing green tea by non-targeted metabolomics. Front Nutr 2023; 10:1104926. [PMID: 36998915 PMCID: PMC10043258 DOI: 10.3389/fnut.2023.1104926] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Withering is an important processing stage in green tea, which contributes to the tea flavor quality. The aim of this work was to comprehensively investigate the changes of chemical features and flavor attributes in Longjing green teas produced with five different withering degrees (moisture content of 75.05, 72.53, 70.07, 68.00, and 64.78%, w.b.). Combined with human sensory evaluation, electronic tongue and chromatic differences analysis, an assessment of the relationship between the withering degree and the sensory quality of Longjing tea was obtained. By using a non-targeted metabolomics approach, 69 significantly differential metabolites were screened. As the withering degree increased, most free amino acids and catechin dimers were increased, largely attributed to the hydrolysis of proteins and catechin oxidative polymerization, respectively. The contents of organic acids as well as phenolic acids and derivatives were reduced. Interestingly, flavone C-glycosides decreased overall while flavonol O-glycosides increased. The correlation analysis revealed that metabolites such as theasinensin F, theasinensin B, theaflavin, theaflavin-3,3′-gallate, theaflavin-3′-gallate, malic acid, succinic acid, quinic acid, theanine glucoside and galloylglucose had a greater influence on the taste and color of tea infusion (|r| > 0.6, p < 0.05). Overall, an appropriate withering degree at a moisture content of around 70% is more favorable to enhance the Longjing tea quality. These results may enhance the understanding of green tea flavor chemistry associated with withering and provide a theoretical basis for green tea processing.
Collapse
Affiliation(s)
- Xujiang Shan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qinyan Yu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Le Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Shan Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
| | - Jiayi Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Ji Li
- Agriculture and Rural Bureau of Chun'an County, Hangzhou, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Yujie Wang,
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Yuliang Deng,
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Jia Li,
| |
Collapse
|
22
|
Lipid metabolic characteristics and marker compounds of ripened Pu-erh tea during pile fermentation revealed by LC-MS-based lipidomics. Food Chem 2023; 404:134665. [DOI: 10.1016/j.foodchem.2022.134665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
23
|
Liu Y, Chen Q, Liu D, Yang L, Hu W, Kuang L, Huang Y, Teng J, Liu Y. Multi-omics and enzyme activity analysis of flavour substances formation: Major metabolic pathways alteration during Congou black tea processing. Food Chem 2023; 403:134263. [DOI: 10.1016/j.foodchem.2022.134263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
|
24
|
Cost-effective and sensitive indicator-displacement array (IDA) assay for quality monitoring of black tea fermentation. Food Chem 2023; 403:134340. [DOI: 10.1016/j.foodchem.2022.134340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022]
|
25
|
Cui HN, Gu HW, Li ZQ, Sun W, Ding B, Li Z, Chen Y, Long W, Yin XL, Fu H. Integration of lipidomics and metabolomics approaches for the discrimination of harvest time of green tea in spring season by using UPLC-Triple-TOF/MS coupled with chemometrics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1119314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The production season is one of the judgment standards of the green tea quality and spring tea is generally considered of higher quality. Moreover, early spring tea is usually more precious and sells for a higher price. Therefore, a multifaceted strategy that integrates lipidomics and metabolomics, based on UPLC-Triple-TOF/MS coupled with chemometrics, was developed to discriminate early spring green tea (ET) and late spring green tea (LT). Twenty-six lipids and forty-five metabolites were identified as characteristic components. As for characteristic lipids, most of glycerophospholipids and acylglycerolipids have higher contents in ET. By contrast, glycoglycerolipids, sphingolipids and hydroxypheophytin a were shown higher levels in LT samples. Most of the differential metabolites identified were more abundant in ET samples. LT samples have much higher catechin, procyanidin B2, and 3',8-dimethoxyapigenin 7-glucoside contents. Based on the integration of differential lipids and metabolites, the reconstructed orthogonal partial least squares discriminant analysis (OPLS-DA) model displayed 100% correct classification rates for harvest time discrimination of green tea samples. These results demonstrated that the integration of lipidomics and metabolomics approaches is a promising method for the discrimination of tea quality.
Collapse
|
26
|
Wu S, Yu Q, Shen S, Shan X, Hua J, Zhu J, Qiu J, Deng Y, Zhou Q, Jiang Y, Yuan H, Li J. Non-targeted metabolomics and electronic tongue analysis reveal the effect of rolling time on the sensory quality and nonvolatile metabolites of congou black tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Zhou J, Fang T, Li W, Jiang Z, Zhou T, Zhang L, Yu Y. Widely targeted metabolomics using UPLC-QTRAP-MS/MS reveals chemical changes during the processing of black tea from the cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya. Food Res Int 2022; 162:112169. [DOI: 10.1016/j.foodres.2022.112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
|
28
|
Zhang S, Sun L, Shi Y, Song Y, Wang Y, Fan K, Zong R, Li Y, Wang L, Bi C, Ding Z. The application of enzymatic fermented soybean effectively regulates associated microbial communities in tea soil and positively affects lipid metabolites in tea new shoots. Front Microbiol 2022; 13:992823. [PMID: 36081789 PMCID: PMC9445587 DOI: 10.3389/fmicb.2022.992823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Compared with traditional organic fertilizer, fermented soybean is a better fertilizer resource in tea plantations. The application of organic fertilizer is a feasible practice to mitigate the soil degradation caused by the overuse of chemical fertilizers, which can effectively regulate soil microbial communities in tea plantations. However, the effects of fermented soybean on soil microbial communities, soil metabolites and metabolites in tea new shoots have not been systematically demonstrated, and their interactions have never been studied. Here, we investigated the responses of the soil microbial community, soil metabolites and metabolites of tea new shoots to urea fertilization (UF), naturally fermented soybean fertilization (NFS) and enzymatic fermented soybean fertilization (EFS), and analyzed the relationships between soil microbes, soil metabolites and metabolites in tea new shoots. The results showed that soil bacterial communities were dominated by Pseudomonas, Romboutsia, Candidatus_Nitrosotalea and Helicobacter, and soil fungal communities were dominated by Peziza, Fusarium, Candida and Cheilymenia at the genus level. In EFS, bacterial genera (Glutamicibacter and Streptomyces) and fungal genera (Candida and Actinomucor) presented high abundances, which were correlated with soil carbohydrate and lipid including D-Mannitol, D-Sorbitol, 9,12-Octadecadienoic acid and (Z)-13-Docosenoic acid. Enzymatic fermented soybean fertilization also affected the lipid metabolites in tea new shoots. Glycerolipids and glycerophospholipids significantly increased in EFS, which positively correlated with some soil microbial communities. Besides, the application of fermented soybean fertilizer could increase the contents of TP, AP and AK, which were also important environmental factors affecting the structure of soil microbial community in tea plantation. It was concluded that fermented soybean fertilization could improve soil nutrition, regulate associated microbial communities, and positively affect lipid metabolites in tea new shoots. This study not only explores the relationships between soil microbes and metabolites in tea plants, but also provides feasible technical guidance to cultivate high-quality tea using soybean as high-grade fertilizer.
Collapse
Affiliation(s)
- Shuning Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yujie Shi
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yujie Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Rui Zong
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yusheng Li
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Linjun Wang
- Weihai Agricultural and Rural Affairs Service Center, Weihai, China
| | - Caihong Bi
- Linyi Agricultural Technology Extension Center, Linyi, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
29
|
Comprehensive comparative analysis of lipid profile in dried and fresh walnut kernels by UHPLC-Q-Exactive Orbitrap/MS. Food Chem 2022; 386:132706. [DOI: 10.1016/j.foodchem.2022.132706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/16/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022]
|
30
|
Chen X, Wang P, Wei M, Lin X, Gu M, Fang W, Zheng Y, Zhao F, Jin S, Ye N. Lipidomics analysis unravels changes from flavor precursors in different processing treatments of purple-leaf tea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3730-3741. [PMID: 34919290 DOI: 10.1002/jsfa.11721] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lipids are one of the most important bioactive compounds, affecting the character and quality of tea. However, the contribution of lipids to tea productions is still elusive. Here, we systematically identified the lipid profiles of green, oolong, and black teas in purple-leaf tea (Jinmingzao, JMZ) and green-leaf tea (Huangdan, HD), respectively. RESULTS The lipids analysis showed regular accumulation in tea products with different manufacturing processes, among which the fatty acids, glycerolipids, glycerophospholipids, and sphingolipids contribute to the quality characteristics of tea products, including typical fatty acyl (FA), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerols (DGDG), and phosphatidylcholine (PC). Compared tea materials with products, levels of fatty acids were up-regulated, while glycerolipids and glycerophospholipids were down-regulated in tea products. FA 18:3, FA 16:0, MGDG 36:6, DGDG 36:6, PC 34:3, and PC 36:6 were the negative contributors to green tea flavor formation of purple-leaf tea. The pathway analysis of significant lipids in materials and products of purple-leaf tea were enriched linolenic acid metabolism pathway and glycerolipid metabolism. CONCLUSION This study provides insights into the lipid metabolism profiles of different tea leaf colors, and found that fatty acids are essential precursors of black tea flavor formation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuejin Chen
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Pengjie Wang
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou, China
| | - Mingxiu Wei
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou, China
| | - Xinying Lin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou, China
| | - Mengya Gu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yucheng Zheng
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou, China
| | - Feng Zhao
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shan Jin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou, China
| |
Collapse
|
31
|
Dynamic Variation of Amino Acid Contents and Identification of Sterols in Xinyang Mao Jian Green Tea. Molecules 2022; 27:molecules27113562. [PMID: 35684499 PMCID: PMC9182030 DOI: 10.3390/molecules27113562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
As important biomolecules in Camellia sinensis L., amino acids (AAs) are considered to contribute to the overall green tea sensory quality and undergo dynamic changes during growth. However, limited by analytical capacity, detailed AAs composition in different growth stages remains unclear. To address this question, we analyzed the dynamic changes of 23 AAs during leaf growth in Xinyang Mao Jian (XYMJ) green tea. Using amino acid analyzer, we demonstrated that most AAs are abundant on Pure Brightness Day and Grain Rain Day. After Grain Rain, 23 AAs decreased significantly. Further analysis shows that theanine has a high level on the day before Spring Equinox and Grain Rain, accounting for 44–61% of the total free AAs content in tea leaves. Glu, Pro, and Asp are the second most abundant AAs. Additionally, spinasterol and 22,23-dihydrospinasterol are first purified and identified in ethanol extract of XYMJ by silica gel column chromatography method. This study reveals the relationship between plucking days and the dynamic changes of AAs during the growth stage and proves the rationality of the traditional plucking days of XYMJ green tea.
Collapse
|
32
|
Li J, Wu S, Yu Q, Wang J, Deng Y, Hua J, Zhou Q, Yuan H, Jiang Y. Chemical profile of a novel ripened Pu-erh tea and its metabolic conversion during pile fermentation. Food Chem 2022; 378:132126. [PMID: 35033721 DOI: 10.1016/j.foodchem.2022.132126] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/26/2022]
Abstract
Ripened Pu-erh tea is a unique tea type produced from microbial fermentation. Recently, a novel ripened Pu-erh tea (NPT) produced using a patented pile fermentation method has become increasingly popular due to its improved flavor and enriched bioactive gallic acid (GA). However, the detailed chemical features of NPT and their formation during pile fermentation remain unclear. Herein, untargeted metabolomics revealed enrichment of GA, amino acids, free sugars and reduction in catechins and flavonol glycosides in NPT. Mainly, GA was 1.99 times higher in NPT than traditional Pu-erh tea (p < 0.001). The metabolic changes were tracked during pile fermentation, and possible pathways were mapped. GA enrichment may be produced from enhanced hydrolysis of galloyl catechins and phenolic acid esters. Degradation of flavonol glycosides and formation of other metabolites were observed. This study will advance our understanding of conversions during pile fermentation and provide new insights into directional manufacturing of high-quality ripened tea.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shimin Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qinyan Yu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjie Hua
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
33
|
Zhang D, Guo X, Wang Q, Zhao L, Sun Q, Duan X, Cao Y, Sun H. Investigation on lipid profile of peanut oil and changes during roasting by lipidomic approach. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Black tea aroma formation during the fermentation period. Food Chem 2021; 374:131640. [PMID: 34839968 DOI: 10.1016/j.foodchem.2021.131640] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 01/19/2023]
Abstract
The present study aimed to systematically investigate black tea aroma formation during the fermentation period. In total, 158 volatile compounds were identified. Of these, most amino acid-derived volatiles (AADVs) and carotenoid-derived volatiles (CDVs) showed significant increases, while fatty acid-derived volatiles (FADVs) and volatile terpenoids (VTs) displayed diverse changes during the fermentation period. During this time, fatty acids, amino acids, carotenoids, and glycosidically bound volatiles (GBVs, especially primeverosides) were found to degrade to form aroma components. Further, equivalent quantification of aroma showed that the intensity of green scent was notably decreased, while the intensities of sweet and floral/fruity scents were greatly increased and gradually dominated the aroma of tea leaves. AADVs and CDVs were shown to make greater contributions to the formation of sweet and floral/fruity scents than VTs. Our study provides a detailed characterization of the formation of sweet and floral/fruity aromas in black tea during the fermentation period.
Collapse
|
35
|
Hu A, Wei F, Huang F, Xie Y, Wu B, Lv X, Chen H. Comprehensive and High-Coverage Lipidomic Analysis of Oilseeds Based on Ultrahigh-Performance Liquid Chromatography Coupled with Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8964-8980. [PMID: 33529031 DOI: 10.1021/acs.jafc.0c07343] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oilseeds are an important source of dietary lipids, and a comprehensive analysis of oilseed lipids is of great significance to human health, while information about the global lipidomes in oilseeds was limited. Herein, an ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry method for comprehensive lipidomic profiling of oilseeds was established and applied. First, the lipid extraction efficiency and lipid coverage of four different lipid extraction methods were compared. The optimized methyl tert-butyl ether extraction method was superior to isopropanol, Bligh-Dyer, and Folch extraction methods, in terms of the operation simplicity, lipid coverage, and number of identified lipids. Then, global lipidomic analysis of soybean, sesame, peanut, and rapeseed was conducted. A total of 764 lipid molecules, including 260 triacylglycerols, 54 diacylglycerols, 313 glycerophospholipids, 36 saccharolipids, 35 ceramides, 30 free fatty acids, 21 fatty esters, and 15 sphingomyelins were identified and quantified. The compositions and contents of lipids significantly varied among different oilseeds. Our results provided a theoretical basis for the selection and breeding of varieties of oilseed as well as deep processing of oilseed for the edible oil industry.
Collapse
Affiliation(s)
- Aipeng Hu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Fenghong Huang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Ya Xie
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Bangfu Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
36
|
Li L, Wang Y, Jin S, Li M, Chen Q, Ning J, Zhang Z. Evaluation of black tea by using smartphone imaging coupled with micro-near-infrared spectrometer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118991. [PMID: 33068895 DOI: 10.1016/j.saa.2020.118991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Tea quality is generally assessed through panel sensory evaluation, which requires elaborate sample preparation steps. Here, a novel and low-cost evaluation method of using smartphone imaging coupled with micro-near-infrared (NIR) spectrometer based on digital light processing is proposed to classify the quality grades of Keemun black tea. RGB color information was obtained by Image J software, eight texture characteristics, including scheme, contrast, dissimilarity, entropy, correlation, second moment and variance, and homogeneity were obtained by ENVI software based on co - occurrence method from smartphone images, and spectral data were preprocessed with standard normal variate. A principal component analysis (PCA)-support vector machine (SVM) model was established to analyze the color, texture, and spectral data. Low-level and middle-level fusion strategies were introduced for analyzing the fusion data. The results indicated that the accuracy of the SVM model on mid-level data fusion (100.00%, 94.29% for calibration set and prediction set, respectively) was higher than that obtained for separate color (97.14%, 88.57%), texture (84.29%, 60%), spectrum (74.29%, 68.57%) evaluation, or low-level data fusion (88.57%, 82.86%). The best SVM model yielded satisfactory performance with 94.29% accuracy for the prediction sets. These results suggested that smartphone imaging coupled with micro-NIR spectroscopy is an effective and low-cost tool for evaluating tea quality.
Collapse
Affiliation(s)
- Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shanshan Jin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Menghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
37
|
Zeng J, Li J, Liu S, Yang Z, Zhong Y, Chen X, Li G, Li J. Lipidome disturbances in preadipocyte differentiation associated with bisphenol A and replacement bisphenol S exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141949. [PMID: 32891999 DOI: 10.1016/j.scitotenv.2020.141949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol S (BPS) is the major substitute for the production of bisphenol A (BPA)-free products and detected in both food and environment. Although the relationship between BPA exposure and increased risk of obesity and diabetes has been noted, the potential influence of BPS is not fully understood. Herein, a non-targeted lipidomic study was performed to explore BPA/BPS exposure actions using the 3T3-L1 preadipocyte differentiation model, and revealed the comprehensive lipidome disturbance induced by either BPA or BPS exposure at different doses of 0.01, 1 and 100 μM. BPA was more potent than BPS in disturbance of lipid metabolism. A considerable similarity of BPS exposure to BPA was discovered. The key lipid remodeling in response to exposure was found to involve the cardiolipins, phosphatidylglycerols and fatty acids metabolic pathways, providing novel clues of potential mechanism in which both BPA and BPS exposure could be associated with increased risk of insulin resistance. Our study supplies the perspective into the lipidome response to environmental stress induced by BPA/BPS, and shows that BPA-free products are not necessarily safer. Substitution of BPA by its structural analog BPS should be therefore performed with caution.
Collapse
Affiliation(s)
- Jun Zeng
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China.
| | - Junli Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Sishangyu Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhiqiang Yang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yue Zhong
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaomei Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Guiling Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
38
|
Li J, Hua J, Yuan H, Deng Y, Zhou Q, Yang Y, Dong C, Zeng J, Jiang Y. Investigation on green tea lipids and their metabolic variations during manufacturing by nontargeted lipidomics. Food Chem 2020; 339:128114. [PMID: 33152890 DOI: 10.1016/j.foodchem.2020.128114] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 01/01/2023]
Abstract
Lipids are hydrophobic metabolites implicated in tea flavor quality. Understanding their transformations during tea manufacture is of particular interest. To date, the detailed lipid composition and variations during green tea manufacture are largely unknown. Herein, we performed a comprehensive characterization of the dynamic changes of lipids during green tea manufacture, by applying nontargeted lipidomics using ultrahigh performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Exactive/MS) combined with chemometric tools. Totally, 283 lipid species were detected, covering 20 subclasses. Significant lipidomic variations were observed during green tea manufacture, especially in the fixation stage, mainly associated with chlorophyll decomposition, phosphatidic acids (PAs) reduction and glycolipids degradation, which potentially contribute to tea color and aroma quality. Specifically, the most prominent decrease of PAs content during green tea manufacture was identified for the first time. This study provides insights into the lipid metabolic fates upon green tea manufacture, and their roles in green tea sensory quality.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjie Hua
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanqin Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chunwang Dong
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jun Zeng
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China.
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
39
|
Zhang Q, Zhang YY, Liu Z, Zhang YM, Lu N, Hai GQ, Shao SZ, Zheng QX, Zhang X, Fu HY, Bai CC, Yu YJ, She Y. Differentiating Westlake Longjing tea from the first- and second-grade producing regions using ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry-based untargeted metabolomics in combination with chemometrics. J Sep Sci 2020; 43:2794-2803. [PMID: 32386337 DOI: 10.1002/jssc.201901138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 11/08/2022]
Abstract
There are numerous articles published for geographical discrimination of tea. However, few research works focused on the authentication and traceability of Westlake Longjing green tea from the first- and second-grade producing regions because the tea trees are planted in a limited growing zone with identical cultivate condition. In this work, a comprehensive analytical strategy was proposed by ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based untargeted metabolomics coupled with chemometrics. The automatic untargeted data analysis strategy was introduced to screen metabolites that expressed significantly among different regions. Chromatographic features of metabolites can be automatically and efficiently extracted and registered. Meanwhile, those that were valuable for geographical origin discrimination were screened based on statistical analysis and contents in samples. Metabolite identification was performed based on high-resolution mass values and tandem mass spectra of screened peaks. Twenty metabolites were identified, based on which the two-way encoding partial least squares discrimination analysis was built for geographical origin prediction. Monte Caro simulation results indicated that prediction accuracy was up to 99%. Our strategy can be applicable for practical applications in the quality control of Westlake Longjing green tea.
Collapse
Affiliation(s)
- Qian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Yu-Ying Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Zhi Liu
- Institute of Quality and Standards for Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Yue-Ming Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Ning Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Guo-Qing Hai
- College of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Sheng-Zhi Shao
- Institute of Quality and Standards for Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Qing-Xia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P. R. China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Hai-Yan Fu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Chang-Cai Bai
- College of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Yong-Jie Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China.,Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Ningxia Medical University, Yinchuan, P. R. China
| | - Yuanbin She
- Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
40
|
Li Q, Lai X, Sun L, Cao J, Ling C, Zhang W, Xiang L, Chen R, Li D, Sun S. Antiobesity and anti-inflammation effects of Hakka stir-fried tea of different storage years on high-fat diet-induced obese mice model via activating the AMPK/ACC/CPT1 pathway. Food Nutr Res 2020; 64:1681. [PMID: 32577118 PMCID: PMC7286352 DOI: 10.29219/fnr.v64.1681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/25/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background As a typical representative of metabolic syndrome, obesity is also one of the extremely dangerous factors of cardiovascular diseases. Thus, the prevention and treatment of obesity has gradually become a global campaign. There have been many reports that green tea is effective in preventing obesity, but as a kind of green tea with regional characteristics, there have been no reports that Hakka stir-fried tea (HT) of different storage years has a weight loss effect. Aims The aim was to investigate the effect of HT in diet-induced obese mice. Methods The mice were divided into five groups as follows: the control group received normal diet; the obese model group received high-fat diet; and HT2003, HT2008, and HT2015 groups, after the induction of obesity via a high-fat diet, received HT of different storage years treatment for 6 weeks, respectively. Results It was observed that HT decreased the levels of serum and liver triglyceride; the ratio of liver to body weight; accumulation of epididymal, perirenal, and mesenteric fat; the degree of hepatic steatosis; and adipocyte hypertrophy, with the concomitant reduction of body weight. Moreover, HT decreased the expression levels of proinflammatory cytokines tumor necrosis factor α (TNF α), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and reduced fatty acid synthase (FAS) activity in liver tissue of obese mice. In addition, HT treatment also increased the phosphorylation of AMP-activated protein kinase (AMPK) and its direct downstream proteins, acetyl coenzyme A carboxylase (ACC), and carnitine palmitoyltransferase I (CPT-1), which participate in FAS pathway. Conclusions These findings demonstrate that HT treatment has a potential protection on high-fat diet-induced obesity mice via activating the AMPK/ACC/CPT1 pathway, and to a certain extent, it has nothing to do with the storage time of three kinds of HT.
Collapse
Affiliation(s)
- Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Caijin Ling
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Wenji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Limin Xiang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| |
Collapse
|
41
|
Jia W, Shi Q, Shi L, Qin J, Chang J, Chu X. A strategy of untargeted foodomics profiling for dynamic changes during Fu brick tea fermentation using ultrahigh-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2020; 1618:460900. [DOI: 10.1016/j.chroma.2020.460900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 01/18/2023]
|
42
|
Ren G, Wang Y, Ning J, Zhang Z. Highly identification of keemun black tea rank based on cognitive spectroscopy: Near infrared spectroscopy combined with feature variable selection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118079. [PMID: 31982655 DOI: 10.1016/j.saa.2020.118079] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
From the perspective of combating fraud issues and examining keemun black tea properties, there was a contemporary urgent demand for a keemun black tea rankings identification system. Current rapid evaluation systems had been mainly developed for green tea grade evaluation, but there was space for improvement to establish a highly robust model. The present study proposed cognitive spectroscopy that combined near infrared spectroscopy (NIRS) with multivariate calibration and feature variable selection methods. We defined "cognitive spectroscopy" as a protocol that selects characteristic information from complex spectral data and showed optimal results without human intervention. 700 samples representing keemun black tea from seven quality levels were scanned applying an NIR sensor. To differentiate which wavelength variables of the acquired NIRS data carry key and feature information regarding keemun black tea grades, there were four different variables screening approaches, namely genetic algorithm (GA), successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), and shuffled frog leaping algorithm (SFLA), were compared in this study. Cognitive models were developed using least squares support vector machine (LSSVM), back propagation neural network (BPNN) and random forest (RF) methods combined with the optimized characteristic variables from the above variables selection algorithms for the identification of keemun black tea rank quality. Experimental results showed that all cognitive models utilizing the SFLA approach achieved steady predictive results based on eight latent variables and selected thirteen characteristic wavelength variables. The CARS-LSSVM model with the best predictive performance was proposed based on selecting ten characteristic latent variables, and the best performance indicators of the model were as follows: the root mean square error of prediction (RMSEP) was 0.0413, the correlation coefficients of prediction set (Rp) was 0.9884, and the correct discriminant rate (CDR) was 99.01% in the validation process. This study demonstrated that cognitive spectroscopy represented a proper strategy for the highly identification of quality rankings of keemun black tea.
Collapse
Affiliation(s)
- Guangxin Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| |
Collapse
|
43
|
Li J, Wang J, Yao Y, Hua J, Zhou Q, Jiang Y, Deng Y, Yang Y, Wang J, Yuan H, Dong C. Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Zhou X, Chen X, Du Z, Zhang Y, Zhang W, Kong X, Thelen JJ, Chen C, Chen M. Terpenoid Esters Are the Major Constituents From Leaf Lipid Droplets of Camellia sinensis. FRONTIERS IN PLANT SCIENCE 2019; 10:179. [PMID: 30863415 PMCID: PMC6399487 DOI: 10.3389/fpls.2019.00179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/05/2019] [Indexed: 05/08/2023]
Abstract
Lipid droplets (LDs) have been widely found from diverse species and exhibit diverse functions. It remains unexplored what potential roles they played in tea. To address this question, we analyzed the chemical composition and the dynamic changes of cytosolic LDs during leaf growth and diurnal cycle. Using TopFluor cholesterol and Nile Red staining we demonstrated that cytosolic LDs were heterogeneous in tea tree (Camellia sinensis cv. Tieguanyin); the size and number of LDs increased with leaf growth. Compositional analysis showed that terpenoid esters and diacylglycerol are the major components of cytosolic LDs. The contents of total sterol esters (SEs) and β-amyrin esters increased with leaf expansion and growth; individual SE also showed diurnal changes. Our data suggest that cytosolic LDs from tea tree leave mainly serve as storage site for free sterols and triterpenoids in the form of esters. Cytosolic LDs were not the major contributors to the aroma quality of made tea.
Collapse
Affiliation(s)
- Xin Zhou
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant System Biology, Fujian Agriculture and Forestry University, Fujian, China
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fujian, China
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian, China
| | - Xiaobing Chen
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant System Biology, Fujian Agriculture and Forestry University, Fujian, China
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fujian, China
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian, China
| | - Zhenghua Du
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian, China
| | - Yi Zhang
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian, China
| | - Wenjing Zhang
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian, China
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Jay J. Thelen
- Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, United States
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fujian, China
- *Correspondence: Changsong Chen, Mingjie Chen,
| | - Mingjie Chen
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian, China
- *Correspondence: Changsong Chen, Mingjie Chen,
| |
Collapse
|