1
|
Yan Y, Chen Y, Hu H, Jiang Y, Kang Z, Wu J. Discovery of a New Class of Lipophilic Pyrimidine-Biphenyl Herbicides Using an Integrated Experimental-Computational Approach. Molecules 2024; 29:2409. [PMID: 38893290 PMCID: PMC11173721 DOI: 10.3390/molecules29112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Herbicides are useful tools for managing weeds and promoting food production and sustainable agriculture. In this study, we report on the development of a novel class of lipophilic pyrimidine-biphenyl (PMB) herbicides. Firstly, three PMBs, Ia, IIa, and IIIa, were rationally designed via a scaffold hopping strategy and were determined to inhibit acetohydroxyacid synthase (AHAS). Computational simulation was carried out to investigate the molecular basis for the efficiency of PMBs against AHAS. With a rational binding mode, and the highest in vitro as well as in vivo potency, Ia was identified as a preferable hit. Furthermore, these integrated analyses guided the design of eighteen new PMBs, which were synthesized via a one-step Suzuki-Miyaura cross-coupling reaction. These new PMBs, Iba-ic, were more effective in post-emergence control of grass weeds compared with Ia. Interestingly, six of the PMBs displayed 98-100% inhibition in the control of grass weeds at 750 g ai/ha. Remarkably, Ica exhibited ≥ 80% control against grass weeds at 187.5 g ai/ha. Overall, our comprehensive and systematic investigation revealed that a structurally distinct class of lipophilic PMB herbicides, which pair excellent herbicidal activities with new interactions with AHAS, represent a noteworthy development in the pursuit of sustainable weed control solutions.
Collapse
Affiliation(s)
- Yitao Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yinglu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanxian Hu
- School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Youwei Jiang
- Hangzhou Jingyinkang Biological Technology Co., Ltd., Hangzhou 311110, China
| | | | - Jun Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Guo M, Zhou J, Tian Y, Du X, Tang X, Lu H, Li Y, Xu Y, Yuan Z, Qin Z. Synthesis, Herbicidal Activity against Barnyard Grass, and Photolytic Behavior of Aryl 2,6-Dipyrimidinoxybenzoates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:300-312. [PMID: 38110303 DOI: 10.1021/acs.jafc.3c05238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In this study, we investigated the characteristics and herbicidal potential of bispyribac phenolic esters, which belong to the 2-(pyrimidin-2-yloxy)benzoic acid (PYB) class of acetohydroxyacid synthase (AHAS-)-inhibiting herbicides. These herbicides are primarily used for controlling Poaceae and broadleaf weeds. Among them, bispyribac-sodium stands out as a representative in this class. Surprisingly, other bispyribac esters, including alkanol and phenol esters exhibit considerably reduced herbicidal activity compared to bispyribac-sodium. In contrast, oxime esters (e.g., pyribenzoxim) demonstrate high activity. To further understand and develop novel PYB herbicides, we synthesized and screened a series of bispyribac phenolic esters while investigating their photochemical behaviors. Several compounds displayed excellent herbicidal activity, with compounds Ia-19 and Ic showing impressive 90% effective dosages for fresh weight inhibition of barnyard grass, measuring 0.55 and 0.60 g a.i./hm2, respectively. These values were approximately half of bispyribac-sodium or pyribenzoxim. The results indicate that the herbicidal activity of phenolic esters is influenced by both their binding ability to the AHAS enzyme and their decomposition into bispyribac acid. For instance, bispyribac phenol ester exhibited considerably reduced receptor affinity compared to bispyribac-sodium, and faced challenges in transforming into bispyribac acid, explaining its diminished herbicidal activity. However, introducing a photosensitive nitro group led to a complete transformation. This modification improved its affinity with AHAS and accelerated its decomposition into bispyribac acid, further accelerated by photocatalysis. Consequently, nitro-containing compounds displayed heightened herbicidal activity. The findings from this study open possibilities for structural optimization of phenolic esters through quantitative structure-activity relationship analysis, potentially regulating their activity-releasing period. Furthermore, the high activity of aromatic heterocyclic esters offers new insights into developing novel PYB herbicides.
Collapse
Affiliation(s)
- Menglei Guo
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Zhou
- College of Agriculture, Yangtze University, Jinzhou 434023, China
| | - Yiyi Tian
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoying Du
- College of Agriculture, Yangtze University, Jinzhou 434023, China
| | - Xianjun Tang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Huizhe Lu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyi Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yanjun Xu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Ziyang Yuan
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaohai Qin
- College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Zhou S, Zhao LT, Meng FF, Hua XW, Li YH, Liu B, Chen J, Chen AL, Li ZM. Synthesis, herbicidal activity and soil degradation of novel 5-substituted sulfonylureas as AHAS inhibitors. PEST MANAGEMENT SCIENCE 2022; 78:5313-5324. [PMID: 36054636 DOI: 10.1002/ps.7153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/03/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chlorsulfuron, metsulfuron-methyl and ethametsulfuron can damage sensitive crops in rotation pattern as a result of their long persistence in soil. To explore novel sulfonylurea (SU) herbicides with favorable soil degradation rates, four series of SUs were synthesized through a structure-based drug design (SBDD) strategy. RESULTS The target compounds, especially Ia, Id and Ie, exhibited prospective herbicidal activity against dicotyledon oil seed rape (Brassica campestris), amaranth (Amaranthus retroflexus), monocotyledon barnyard grass (Echinochloa crusgalli) and crab grass (Digitaria sanguinalis) at a concentration of 15 a.i. g ha-1 . Additionally, Ia, Id and Ig displayed excellent inhibitory effects against AtAHAS, with Kapp i values of 59.1, 34.5 and 71.8 μm, respectively, which were much lower than that of chlorsulfuron at 149.4 μm. The π-π stack and H-bonds between the Ia conformation and AtAHAS in the molecular docking results confirmed the series of compounds to be conventional AHAS inhibitors. In alkaline soil (pH = 8.46), compounds Ia-Ig revealed various degrees of acceleration in the degradation rate compared with chlorsulfuron. Besides, compound Ia showed considerable wheat and corn safety under postemergence at the concentration of 30, 60 and even 120 a.i. g ha-1 . CONCLUSION Overall, based on the synthetic procedure, herbicidal activity, soil degradation and crop safety, the Ia sulfonylureas series were chosen to be investigated as prospective AHAS inhibitors. The 5-dimethylamino group on SUs accelerated the degradation rate at different levels in alkaline soils which seems to be controllable in conventional cropping systems in their further application. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sha Zhou
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Lv-Ting Zhao
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Fan-Fei Meng
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Bin Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Jie Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - An-Liang Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Zheng-Ming Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nat Commun 2022; 13:3368. [PMID: 35690625 PMCID: PMC9188596 DOI: 10.1038/s41467-022-31023-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/27/2022] [Indexed: 01/02/2023] Open
Abstract
Acetohydroxyacid synthase (AHAS) is the target for more than 50 commercial herbicides; first applied to crops in the 1980s. Since then, 197 site-of-action resistance isolates have been identified in weeds, with mutations at P197 and W574 the most prevalent. Consequently, AHAS is at risk of not being a useful target for crop protection. To develop new herbicides, a functional understanding to explain the effect these mutations have on activity is required. Here, we show that these mutations can have two effects (i) to reduce binding affinity of the herbicides and (ii) to abolish time-dependent accumulative inhibition, critical to the exceptional effectiveness of this class of herbicide. In the two mutants, conformational changes occur resulting in a loss of accumulative inhibition by most herbicides. However, bispyribac, a bulky herbicide is able to counteract the detrimental effects of these mutations, explaining why no site-of-action resistance has yet been reported for this herbicide. Acetohydroxyacid synthase (AHAS) is the target of more than 50 commercial herbicides, with many site-of-action resistance isolates identified in weeds. Here, the authors report the structural and kinetic characterizations to explain the effect AHAS mutations have on herbicide potency.
Collapse
|
5
|
Wu L, Hua XW, Li YH, Wang ZW, Zhou S, Li ZM. Alkaline Soil Degradation and Crop Safety of 5-Substituted Chlorsulfuron Derivatives. Molecules 2022; 27:molecules27103318. [PMID: 35630795 PMCID: PMC9145588 DOI: 10.3390/molecules27103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfonylurea herbicides can lead to serious weed resistance due to their long degradation times and large-scale applications. This is especially true for chlorsulfuron, a widely used acetolactate synthase inhibitor used around the world. Its persistence in soil often affects the growth of crop seedlings in the following crop rotation, and leads to serious environmental pollution all over the world. Our research goal is to obtain chlorsulfuron-derived herbicides with high herbicidal activities, fast degradation times, as well as good crop safety. On account of the slow natural degradation of chlorsulfuron in alkaline soil, based on the previously reported results in acidic soil, the degradation behaviours of 5-substituted chlorsulfuron analogues (L101–L107) were investigated in a soil with pH 8.39. The experimental data indicated that 5-substituted chlorsulfuron compounds could accelerate degradation rates in alkaline soil, and thus, highlighted the potential for rational controllable degradation in soil. The degradation rates of these chlorsulfuron derivatives were accelerated by 1.84–77.22-fold, compared to chlorsulfuron, and exhibited excellent crop safety in wheat and corn (through pre-emergence treatment). In combination with bioassay activities, acidic and alkaline soil degradation, and crop safety, it was concluded that compounds L104 and L107, with ethyl or methyl groups, are potential green sulfonylurea herbicides for pre-emergence treatment on wheat and corn. This paper provides a reference for the further design of new sulfonylurea herbicides with high herbicidal activity, fast, controllable degradation rates, and high crop safety.
Collapse
Affiliation(s)
- Lei Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.W.); (Y.-H.L.); (Z.-W.W.)
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng 252059, China;
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.W.); (Y.-H.L.); (Z.-W.W.)
| | - Zhong-Wen Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.W.); (Y.-H.L.); (Z.-W.W.)
| | - Sha Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.W.); (Y.-H.L.); (Z.-W.W.)
- Correspondence: (S.Z.); (Z.-M.L.)
| | - Zheng-Ming Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.W.); (Y.-H.L.); (Z.-W.W.)
- Correspondence: (S.Z.); (Z.-M.L.)
| |
Collapse
|
6
|
Jiang B, Chai Y, He X, Wang Y, Chen B, Li Y, Li R. Synthesis, herbicidal activity study, and molecular docking of novel acylthiourea derivatives. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2063289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Binbin Jiang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yunlong Chai
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Xu He
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bo Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yang Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ranhong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
7
|
Wang HL, Li HR, Zhang YC, Yang WT, Yao Z, Wu RJ, Niu CW, Li YH, Wang JG. Discovery of ortho-Alkoxy Substituted Novel Sulfonylurea Compounds That Display Strong Herbicidal Activity against Monocotyledon Grasses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8415-8427. [PMID: 34283603 DOI: 10.1021/acs.jafc.1c02081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study, we have designed and synthesized a series of 42 novel sulfonylurea compounds with ortho-alkoxy substitutions at the phenyl ring and evaluated their herbicidal activities. Some target compounds showed excellent herbicidal activity against monocotyledon weed species. When applied at 7.5 g ha-1, 6-11 exhibited more potent herbicidal activity against barnyard grass (Echinochloa crus-galli) and crab grass (Digitaria sanguinalis) than commercial acetohydroxyacid synthase (AHAS; EC 2.2.1.6) inhibitors triasulfuron, penoxsulam, and nicosulfuron at both pre-emergence and postemergence conditions. 6-11 was safe for peanut for postemergence application at this ultralow dosage, suggesting that it could be considered a potential herbicide candidate for peanut fields. Although 6-11 and triasulfuron share similar chemical structures and have close Ki values for plant AHAS, a significant difference has been observed between their LUMO maps from DFT calculations, which might be a possible factor that leads to their different behaviors toward monocotyledon weed species.
Collapse
Affiliation(s)
- Hai-Lian Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao-Ran Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Chi Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen-Tao Yang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zheng Yao
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ren-Jun Wu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Li JH, Li RH, Wang Y, Li SX, Wu YP, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity, enzyme activity, and molecular docking of novel aniline thiourea. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1901702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Sui xin Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yun peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
9
|
Nan JX, Yang JF, Lin HY, Yan YC, Zhou SM, Wei XF, Chen Q, Yang WC, Qu RY, Yang GF. Synthesis and Herbicidal Activity of Triketone-Aminopyridines as Potent p-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5734-5745. [PMID: 33999624 DOI: 10.1021/acs.jafc.0c07782] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exploring novel p-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) inhibitors has become one of the most promising research directions in herbicide innovation. On the basis of our tremendous interest in exploiting more powerful HPPD inhibitors, we designed a family of benzyl-containing triketone-aminopyridines via a structure-based drug design (SBDD) strategy and then synthesized them. Among these prepared derivatives, the best active 3-hydroxy-2-(3,5,6-trichloro-4-((4-isopropylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one (23, IC50 = 0.047 μM) exhibited a 5.8-fold enhancement in inhibiting Arabidopsis thaliana (At) HPPD activity over that of commercial mesotrione (IC50 = 0.273 μM). The predicted docking models and calculated energy contributions of the key residues for small molecules suggested that an additional π-π stacking interaction with Phe-392 and hydrophobic contacts with Met-335 and Pro-384 were detected in AtHPPD upon the binding of the best active compound 23 compared with that of the reference mesotrione. Such a molecular mechanism and the resulting binding affinities coincide with the proposed design scheme and experimental values. It is noteworthy that inhibitors 16 (3-hydroxy-2-(3,5,6-trichloro-4-((4-chlorobenzyl)amino)picolinoyl)cyclohex-2-en-1-one), 22 (3-hydroxy-2-(3,5,6-trichloro-4-((4-methylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one), and 23 displayed excellent greenhouse herbicidal effects at 150 g of active ingredient (ai)/ha after postemergence treatment. Furthermore, compound 16 showed superior weed-controlling efficacy against Setaria viridis (S. viridis) versus that of the positive control mesotrione at multiple test dosages (120, 60, and 30 g ai/ha). These findings imply that compound 16, as a novel lead of HPPD inhibitors, possesses great potential for application in specifically combating the malignant weed S. viridis.
Collapse
Affiliation(s)
- Jia-Xu Nan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shao-Meng Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xue-Fang Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
10
|
Nqoro X, Jama S, Morifi E, Aderibigbe BA. 4-Aminosalicylic Acid-based Hybrid Compounds: Synthesis and In vitro Antiplasmodial Evaluation. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200802031547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background:
Malaria is a deadly and infectious disease responsible for millions of death
worldwide, mostly in the African region. The malaria parasite has developed resistance to the currently
used antimalarial drugs, and it has urged researchers to develop new strategies to overcome
this challenge by designing different classes of antimalarials.
Objectives:
A class of hybrid compounds containing 4-aminosalicylic acid moiety was prepared via
esterification and amidation reactions and characterized using FTIR, NMR and LC-MS. In vitro antiplasmodial
evaluation was performed against the asexual NF54 strain of P. falciparum parasites.
Methods:
In this research, known 4-aminoquinoline derivatives were hybridized with 4-
aminosalicylic acid to afford hybrid compounds via esterification and amidation reactions. 4-
aminosalicylic acid, a dihydrofolate compound inhibits DNA synthesis in the folate pathway and is
a potential pharmacophore for the development of antimalarials.
Results:
The LC-MS, FTIR, and NMR analysis confirmed the successful synthesis of the compounds.
The compounds were obtained in yields in the range of 63-80%. The hybrid compounds
displayed significant antimalarial activity when compared to 4-aminosalicylic acid, which exhibited
poor antimalarial activity. The IC50 value of the most potent hybrid compound, 9 was 9.54±0.57 nm.
Conclusion:
4-aminosalicylic has different functionalities, which can be used for hybridization with
a wide range of compounds. It is a potential pharmacophore that can be utilized for the design of
potent antimalarial drugs. It was found to be a good potentiating agent when hybridized with 4-
aminoquinoline derivatives suggesting that they can be utilized for the synthesis of a new class of
antimalarials.
Collapse
Affiliation(s)
- Xhamla Nqoro
- Department of Chemistry, University of Fort Hare, Alice Campus,South Africa
| | - Siphesihle Jama
- Department of Chemistry, University of Fort Hare, Alice Campus,South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, University of the Witwatersrand, Johannesburg Private Bag X3, WITS, 2050,South Africa
| | | |
Collapse
|
11
|
Catalase Inhibitors with Dual Pro‐Oxidant Effect as New Therapeutic Agents in Castration‐Resistant Prostate Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Li JH, Wang Y, Wu YP, Li RH, Liang S, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity study and molecular docking of novel pyrimidine thiourea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104766. [PMID: 33518053 DOI: 10.1016/j.pestbp.2020.104766] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
According to the pharmacophore binding strategy and principle of bioelectronic isobaric, used the sulfonylurea bridge as the parent structure, a series of novel thiourea compounds containing aromatic-substituted pyrimidines were designed and synthesized. The preliminary herbicidal activity tests showed that some compounds had good herbicidal activity against Digitaria adscendens, Amaranthus retroflexus, especially for compound 4d and 4f. The results showed that compound 4d had an inhibition rate of 81.5% on the root growth of Brassica napus L. at the concentration of 100 mg L-1, and compound 4f had an inhibition rate of 81% on the root growth of Digitaria adscendens at the concentration of 100 mg L-1. Compounds 4d and 4f had higher comparative activity on Echinochloa crus-galli than the commercial herbicide bensulfuron-methyl. The preliminary structure-activity relationship (SAR) was also summarized. We also tested the in vivo AHAS enzyme activity inhibition experiment of 14 compounds at 100 mg L-1, and the results showed that they all have inhibitory activity on the enzyme, with the highest inhibition rate reaching 44.4% (compound 4d). Based on the results of molecular docking to yeast acetohydroxyacid synthase (AHAS), the possible herbicidal activity mechanism of these compounds was evaluated.
Collapse
Affiliation(s)
- Jia-Hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China.
| | - Yun-Peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran-Hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong-Gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei-Jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
13
|
Qu RY, Yang JF, Chen Q, Niu CW, Xi Z, Yang WC, Yang GF. Fragment-based discovery of flexible inhibitor targeting wild-type acetohydroxyacid synthase and P197L mutant. PEST MANAGEMENT SCIENCE 2020; 76:3403-3412. [PMID: 31943722 DOI: 10.1002/ps.5739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Intensifying weed resistance has challenged the use of existing acetohydroxyacid synthase (AHAS)-inhibiting herbicides. Hence, there is currently an urgent requirement for the discovery of a new AHAS inhibitor to effectively control AHAS herbicide-resistant weed species produced by target mutation. RESULTS To combat weed resistance caused by AHAS with P197L mutation, we built a structure library consisting of pyrimidinyl-salicylic acid derivatives. Using the pharmacophore-linked fragment virtual screening (PFVS) approach, hit compound 8 bearing 6-phenoxymethyl substituent was identified as a potential AHAS inhibitor with antiresistance effect. Subsequently, derivatives of compound 8 were synthesized and evaluated for their inhibitory activities. The study of the enzyme-based structure-activity relationship and structure-resistance relationship studies led to the discovery of a qualified candidate, 28. This compound not only significantly inhibited the activity of wild-type Arabidopsis thaliana (At) AHAS and P197L mutant, but also exhibited good antiresistance properties (RF = 0.79). Notably, compared with bispyribac at 37.5-150 g of active ingredient per hectare (g a.i. ha-1 ), compound 27 exhibited higher growth inhibition against both sensitive and resistant Descurainia sophia, CONCLUSION: The title compounds have great potential to be developed as new leads to effectively control herbicide-resistant weeds comprising AHAS with P197L mutation. Also, our study provided a positive case for discovering novel, potent and antiresistance inhibitors using a fragment-based drug design approach.
Collapse
Affiliation(s)
- Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Cong-Wei Niu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P. R. China
| |
Collapse
|
14
|
Chen T, Xiong H, Yang JF, Zhu XL, Qu RY, Yang GF. Diaryl Ether: A Privileged Scaffold for Drug and Agrochemical Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9839-9877. [PMID: 32786826 DOI: 10.1021/acs.jafc.0c03369] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaryl ether (DE) is a functional scaffold existing widely both in natural products (NPs) and synthetic organic compounds. Statistically, DE is the second most popular and enduring scaffold within the numerous medicinal chemistry and agrochemical reports. Given its unique physicochemical properties and potential biological activities, DE nucleus is recognized as a fundamental element of medicinal and agrochemical agents aimed at different biological targets. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antibacterial, antimalarial, herbicidal, fungicidal, insecticidal, and so on. In this review, we highlight the medicinal and agrochemical versatility of the DE motif according to the published information in the past decade and comprehensively give a summary of the target recognition, structure-activity relationship (SAR), and mechanism of action of its analogues. It is expected that this profile may provide valuable guidance for the discovery of new active ingredients both in drug and pesticide research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
15
|
Zhou S, Meng FF, Hua XW, Li YH, Liu B, Wang BL, Chen J, Chen AL, Li ZM. Controllable Soil Degradation Rate of 5-Substituted Sulfonylurea Herbicides as Novel AHAS Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3017-3025. [PMID: 32059105 DOI: 10.1021/acs.jafc.9b06679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chlorsulfuron has been applied in wheat fields as a recognized herbicide worldwide, yet it was officially banned in China since 2014 for its soil persistence problem. On the basis of our previous research that 5-dimethylamino distinctively accelerated degradation rate in soils, a modified amino moiety (Ia-c) and monosubstituted amino group (Id-e) were introduced onto the fifth position of the benzene ring in sulfonylurea structures, as well as heterocyclic amino substituents (If-g) to seek a suitable soil degradation rate during such an in situ crop rotation system. Referring to the biological data and ScAHAS inhibition and ScAHAS docking results, they turned out to be AHAS inhibitors with high potent herbicidal activities. The various influence on soil degradation rate along with crop safety indicated that different substituents on the fifth position have exerted an apparent impact. Their united study of structure-activity-safety-degradation relationship has great potential to provide valuable information for further development of eco-friendly agrochemicals.
Collapse
Affiliation(s)
- Shaa Zhou
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A & F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan-Fei Meng
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng 252000, China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bao-Lei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A & F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - An-Liang Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A & F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Zheng-Ming Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Wu RJ, Ren T, Gao JY, Wang L, Yu Q, Yao Z, Song GQ, Ruan WB, Niu CW, Song FH, Zhang LX, Li M, Wang JG. Chemical preparation, biological evaluation and 3D-QSAR of ethoxysulfuron derivatives as novel antifungal agents targeting acetohydroxyacid synthase. Eur J Med Chem 2018; 162:348-363. [PMID: 30448420 DOI: 10.1016/j.ejmech.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/29/2022]
Abstract
Accetohydroxyacid synthase (AHAS) is the first enzyme involved in the biosynthetic pathway of branched-chain amino acids. Earlier gene mutation of Candida albicans in a mouse model suggested that this enzyme is a promising target of antifungals. Recent studies have demonstrated that some commercial AHAS-inhibiting sulfonylurea herbicides exerted desirable antifungal activity. In this study, we have designed and synthesized 68 novel ethoxysulfulron (ES) derivatives and evaluated their inhibition constants (Ki) against C. albicans AHAS and cell based minimum inhibitory concentration (MIC) values. The target compounds 5-1, 5-10, 5-22, 5-31 and 5-37 displayed stronger AHAS inhibitions than ES did. Compound 5-1 had the best Ki of 6.7 nM against fungal AHAS and MIC values of 2.5 mg/L against Candida albicans and Candica parapsilosis after 72 h. A suitable nematode model was established here and the antifungal activity of 5-1 was further evaluated in vivo. A possible binding mode was simulated via molecular docking and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationship. The current study has indicated that some ES derivatives should be considered as promising hits to develop antifungal drugs with novel biological target.
Collapse
Affiliation(s)
- Ren-Jun Wu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tongtong Ren
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie-Yu Gao
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Li Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zheng Yao
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guo-Qing Song
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei-Bin Ruan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fu-Hang Song
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Xin Zhang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
17
|
Li KJ, Qu RY, Liu YC, Yang JF, Devendar P, Chen Q, Niu CW, Xi Z, Yang GF. Design, Synthesis, and Herbicidal Activity of Pyrimidine-Biphenyl Hybrids as Novel Acetohydroxyacid Synthase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3773-3782. [PMID: 29618205 DOI: 10.1021/acs.jafc.8b00665] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The issue of weed resistance to acetohydroxyacid synthase (EC 2.2.1.6, AHAS) inhibitors has become one of the largest obstacles for the application of this class of herbicides. In a continuing effort to discover novel AHAS inhibitors to overcome weed resistance, a series of pyrimidine-biphenyl hybrids (4aa-bb and 5aa-ah) were designed and synthesized via a scaffold hopping strategy. Among these derivatives, compounds 4aa ( Ki = 0.09 μM) and 4bb ( Ki = 0.02 μM) displayed higher inhibitory activities against Arabidopsis thaliana AHAS than those of the controls bispyribac ( Ki = 0.54 μM) and flumetsulam ( Ki = 0.38 μM). Remarkably, compounds 4aa, 4bb, 5ah, and 5ag exhibited excellent postemergence herbicidal activity and a broad spectrum of weed control at application rates of 37.5-150 g of active ingredient (ai)/ha. Furthermore, 4aa and 4bb showed higher herbicidal activity against AHAS inhibitor-resistant Descurainia sophia, Ammannia arenaria, and the corresponding sensitive weeds than that of bispyribac at 0.94-0.235 g ai/ha. Therefore, the pyrimidine-biphenyl motif and lead compounds 4aa and 4bb have great potential for the discovery of novel AHAS inhibitors to combat AHAS-inhibiting herbicide-resistant weeds.
Collapse
Affiliation(s)
- Ke-Jian Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Yu-Chao Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Ponnam Devendar
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Qiong Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Cong-Wei Niu
- State Key Laboratory of Elemento-Organic Chemistry , Nankai University (NKU) , Tianjin 300071 , P.R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry , Nankai University (NKU) , Tianjin 300071 , P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071 , P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071 , P.R. China
| |
Collapse
|
18
|
Structural insights into the mechanism of inhibition of AHAS by herbicides. Proc Natl Acad Sci U S A 2018; 115:E1945-E1954. [PMID: 29440497 DOI: 10.1073/pnas.1714392115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acetohydroxyacid synthase (AHAS), the first enzyme in the branched amino acid biosynthesis pathway, is present only in plants and microorganisms, and it is the target of >50 commercial herbicides. Penoxsulam (PS), which is a highly effective broad-spectrum AHAS-inhibiting herbicide, is used extensively to control weed growth in rice crops. However, the molecular basis for its inhibition of AHAS is poorly understood. This is despite the availability of structural data for all other classes of AHAS-inhibiting herbicides. Here, crystallographic data for Saccharomyces cerevisiae AHAS (2.3 Å) and Arabidopsis thaliana AHAS (2.5 Å) in complex with PS reveal the extraordinary molecular mechanisms that underpin its inhibitory activity. The structures show that inhibition of AHAS by PS triggers expulsion of two molecules of oxygen bound in the active site, releasing them as substrates for an oxygenase side reaction of the enzyme. The structures also show that PS either stabilizes the thiamin diphosphate (ThDP)-peracetate adduct, a product of this oxygenase reaction, or traps within the active site an intact molecule of peracetate in the presence of a degraded form of ThDP: thiamine aminoethenethiol diphosphate. Kinetic analysis shows that PS inhibits AHAS by a combination of events involving FAD oxidation and chemical alteration of ThDP. With the emergence of increasing levels of resistance toward front-line herbicides and the need to optimize the use of arable land, these data suggest strategies for next generation herbicide design.
Collapse
|