1
|
Sun Y, Wei X, Zhao T, Shi H, Hao X, Wang Y, Zhang H, Yao Z, Zheng M, Ma T, Fu T, Lu J, Luo X, Yan Y, Wang H. Oleanolic acid alleviates obesity-induced skeletal muscle atrophy via the PI3K/Akt signaling pathway. FEBS Open Bio 2024; 14:584-597. [PMID: 38366735 PMCID: PMC10988678 DOI: 10.1002/2211-5463.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Oleanolic acid (OA) is a pentacyclic triterpene with reported protective effects against various diseases, including diabetes, hepatitis, and different cancers. However, the effects of OA on obesity-induced muscle atrophy remain largely unknown. This study investigated the effects of OA on skeletal muscle production and proliferation of C2C12 cells. We report that OA significantly increased skeletal muscle mass and improved glucose intolerance and insulin resistance. OA inhibited dexamethasone (Dex)-induced muscle atrophy in C2C12 myoblasts by regulating the PI3K/Akt signaling pathway. In addition, it also inhibited expression of MuRF1 and Atrogin1 genes in skeletal muscle of obese mice suffering from muscle atrophy, and increased the activation of PI3K and Akt, thereby promoting protein synthesis, and eventually alleviating muscle atrophy. Taken together, these findings suggest OA may have potential for the prevention and treatment of muscle atrophy.
Collapse
Affiliation(s)
- Yaqin Sun
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaofang Wei
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tong Zhao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Hongwei Shi
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaojing Hao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Yue Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Huiling Zhang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Zhichao Yao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Minxing Zheng
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tianyun Ma
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tingting Fu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Jiayin Lu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaomao Luo
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Yi Yan
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Haidong Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| |
Collapse
|
2
|
Qi H, Tian D, Luan F, Yang R, Zeng N. Pathophysiological changes of muscle after ischemic stroke: a secondary consequence of stroke injury. Neural Regen Res 2024; 19:737-746. [PMID: 37843207 PMCID: PMC10664100 DOI: 10.4103/1673-5374.382221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period, and that the latter has a greater impact on the long-term prognosis of the patient. However, current stroke studies have typically focused only on lesions in the central nervous system, ignoring secondary damage caused by this disease. Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system. Further, the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial, leading scholars to explore more pragmatic intervention strategies. As treatment measures targeting limb symptoms can greatly improve a patient's quality of life, they have become a critical intervention strategy. As the most vital component of the limbs, skeletal muscles have become potential points of concern. Despite this, to the best of our knowledge, there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle. The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy, inflammation, neuroregeneration, mitochondrial changes, and nutritional dysregulation in stroke survivors. In addition, the challenges, as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.
Collapse
Affiliation(s)
- Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Gao S, Zhao X, Leng Y, Xia Z. Dietary supplementation with inulin improves burn-induced skeletal muscle atrophy by regulating gut microbiota disorders. Sci Rep 2024; 14:2328. [PMID: 38282163 PMCID: PMC10822858 DOI: 10.1038/s41598-024-52066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
Inulin, as a prebiotic, could modulate the gut microbiota. Burn injury leads to gut microbiota disorders and skeletal muscle catabolism. Therefore, whether inulin can improve burn-induced muscle atrophy by regulating microbiota disorders remains unknown. This study aimed to clarify that inulin intake alleviates gut microbiota disorders and skeletal muscle atrophy in burned rats. Rats were divided into the sham group, burn group, prebiotic inulin intervention group, and pseudo-aseptic validation group. A 30% total body surface area (TBSA) third-degree burn wound on dorsal skin was evaluated in all groups except the sham group. Animals in the intervention group received 7 g/L inulin. Animals in the validation group received antibiotic cocktail and inulin treatment. In our study inulin intervention could significantly alleviate the burn-induced skeletal muscle mass decrease and skeletal myoblast cell apoptosis. Inulin intake increased the abundances of Firmicutes and Actinobacteria but decreased the abundance of Proteobacteria. The biosynthesis of amino acids was the most meaningful metabolic pathway distinguishing the inulin intervention group from the burn group, and further mechanistic studies have shown that inulin can promote the phosphorylation of the myogenesis-related proteins PI3K, AKT and P70S6K and activate PI3K/AKT signaling for protein synthesis. In conclusion, inulin alleviated burn induced muscle atrophy through PI3K/AKT signaling and regulated gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Shan Gao
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoshuai Zhao
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Leng
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Nie C, Zou Y, Liao S, Gao Q, Li Q. Peptides as carriers of active ingredients: A review. Curr Res Food Sci 2023; 7:100592. [PMID: 37766891 PMCID: PMC10519830 DOI: 10.1016/j.crfs.2023.100592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Bioactive compounds are highly valuable in the fields of food and medicine, but their application is limited due to easy deterioration after oral or skin administration. In recent years, the use of peptides as delivery systems for bioactive compounds has been intensively researched because of their special physicochemical characteristics. Peptides can be assembled using various preparation methods and can form several composite materials such as hydrogels, micelles, emulsions and particles. The composite material properties are determined by peptides, bioactive compounds and the construction methods employed. Herein, this paper provides a comprehensive review of the peptides used for active ingredients delivery, fabrication methods for creating delivery systems, structures, targeting characteristics, functional activities and mechanism of delivery systems, as well as their absorption and metabolism, which provided theoretical basis and reference for further research and development of functional composites.
Collapse
Affiliation(s)
- Congyi Nie
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Qunyu Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| |
Collapse
|
5
|
Xie G, Jin H, Mikhail H, Pavel V, Yang G, Ji B, Lu B, Li Y. Autophagy in sarcopenia: Possible mechanisms and novel therapies. Biomed Pharmacother 2023; 165:115147. [PMID: 37473679 DOI: 10.1016/j.biopha.2023.115147] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
With global population aging, age-related diseases, especially sarcopenia, have attracted much attention in recent years. Characterized by low muscle strength, low muscle quantity or quality and low physical performance, sarcopenia is one of the major factors associated with an increased risk of falls and disability. Much effort has been made to understand the cellular biological and physiological mechanisms underlying sarcopenia. Autophagy is an important cellular self-protection mechanism that relies on lysosomes to degrade misfolded proteins and damaged organelles. Research designed to obtain new insight into human diseases from the autophagic aspect has been carried out and has made new progress, which encourages relevant studies on the relationship between autophagy and sarcopenia. Autophagy plays a protective role in sarcopenia by modulating the regenerative capability of satellite cells, relieving oxidative stress and suppressing the inflammatory response. This review aims to reveal the specific interaction between sarcopenia and autophagy and explore possible therapies in hopes of encouraging more specific research in need and unlocking novel promising therapies to ameliorate sarcopenia.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
6
|
Liu S, Zhang L, Li S. Advances in nutritional supplementation for sarcopenia management. Front Nutr 2023; 10:1189522. [PMID: 37492597 PMCID: PMC10365293 DOI: 10.3389/fnut.2023.1189522] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Sarcopenia is a syndrome characterized by a decline in muscular mass, strength, and function with advancing age. The risk of falls, fragility, hospitalization, and death is considerably increased in the senior population due to sarcopenia. Although there is no conclusive evidence for drug treatment, resistance training has been unanimously recognized as a first-line treatment for managing sarcopenia, and numerous studies have also pointed to the combination of nutritional supplementation and resistance training as a more effective intervention to improve quality of life for people with sarcopenia. People with both malnutrition and sarcopenia have a higher mortality rate, so identifying people at risk of malnutrition and intervening early is extremely important to avoid sarcopenia and its associated problems. This article provides important information for dietary interventions in sarcopenia by summarizing the discoveries and developments of nutritional supplements such as protein, leucine, β-hydroxy-β-methylbutyric acid, vitamin D, vitamin C, vitamin E, omega-3 fatty acids, creatine, inorganic nitrate, probiotics, minerals, collagen peptides, and polyphenols in the management of sarcopenia.
Collapse
Affiliation(s)
- Simin Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Yu Y, Li X, Han S, Zhang J, Wang J, Chai J. miR-181c, a potential mediator for acute kidney injury in a burn rat model with following sepsis. Eur J Trauma Emerg Surg 2023; 49:1035-1045. [PMID: 36227355 DOI: 10.1007/s00068-022-02124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The miRNA profile is changed after burn or sepsis and is involved in regulating inflammatory reactions. However, the function and molecular mechanism of miRNAs in regulating burn sepsis-induced acute kidney injury (AKI) are still unclear. METHODS In this study, animal and cell sepsis models were established after burned rats were injected with lipopolysaccharide (LPS) or NRK-52E cells treated with LPS, respectively. Cytokine expression, inflammatory cell infiltration, serum creatinine (Scr) and kidney injury molecule-1 (KIM-1) levels were analysed after the indicated treatments. RESULTS Burn sepsis increased the expression of inflammatory factors (TNF-α and IL-1β) and chemokines (MIP-1α, MIP-2 and MCP-1). Moreover, burn sepsis promoted macrophage and neutrophil infiltration into the kidney and upregulated the levels of Scr and KIM-1 in the kidney and urine. Ectopic expression of miR-181c significantly reduced LPS-induced TLR4 protein expression, suppressed KIM-1 mRNA levels and subsequently inhibited the activation of inflammatory genes (TNF-α and IL-1β) and chemokine genes (MIP-1α, MIP-2 and MCP-1). CONCLUSIONS Our results demonstrated that miR-181c could suppress TLR4 expression, reduce inflammatory factor and chemokine secretion, mitigate inflammatory cell infiltration into the kidney and downregulate KIM-1 expression, which might ultimately attenuate burn sepsis-induced AKI.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiao Li
- The Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shaofang Han
- The Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jiake Chai
- The Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
8
|
Guan K, Li H, Liu D, Liu M, He C. Identification and antioxidative mechanism of novel mitochondria-targeted MFG-E8 polypeptides in virtual screening and in vitro study. J Dairy Sci 2023; 106:1562-1575. [PMID: 36710194 DOI: 10.3168/jds.2022-22745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/02/2022] [Indexed: 01/30/2023]
Abstract
Milk fat globule-EGF factor VIII (MFG-E8) has been identified as an important source of bioactive peptides, which may exert a pivotal role in regulating biologic redox equilibrium. However, the composition of MFG-E8 polypeptides and their mechanisms on mitigating sarcopenia remain unknown. The aim of this study was to identify the composition of MFG-E8 polypeptides and its effects against oxidative stress in dexamethasone-induced L6 cell injury. Simulated digestion in vitro and liquid chromatography-tandem mass spectrometry were used in this investigation. A total of 95 peptides were identified during complete simulated digestion; among them, the contents of 21 peptides were analyzed, having been determined to exceed 1%. Molecular docking assay found that IDLG, KDPG, YYR, and YYK exhibited high binding affinity with keap1. MTT, dichlorodihydrofluorescein diacetate, mito- and lyso-tracker, and transmission electron microscope assay demonstrated that IDLG and KDPG can alleviate oxidative stress-injured L6 cell vitality, mitochondria activity, vacuolation, and function decrease, and increased autophagy, thereby improving mitochondrial homeostasis. From a molecular perspective, IDLG and KDPG can decrease the expression of keap1 and increase the expression of Nrf2, HO-1, and PGC-1α. Therefore, MFG-E8-derived IDLG and KDPG could be potential polypeptides countering oxidative stress in the treatment of sarcopenia, via the keap1/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Kaifang Guan
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - He Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China.
| | - DanDan Liu
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, Guangxi, PR China
| | - Canxia He
- Department of Preventative Medicine, Medicine School, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
9
|
Dombrecht D, Van Daele U, Van Asbroeck B, Schieffelers D, Guns PJ, Gebruers N, Meirte J, van Breda E. Molecular mechanisms of post-burn muscle wasting and the therapeutic potential of physical exercise. J Cachexia Sarcopenia Muscle 2023; 14:758-770. [PMID: 36760077 PMCID: PMC10067483 DOI: 10.1002/jcsm.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
After a severe burn injury, a systemic stress response activates metabolic and inflammatory derangements that, among other, leads to muscle mass loss (muscle wasting). These negative effects on skeletal muscle continue for several months or years and are aggravated by short-term and long-term disuse. The dynamic balance between muscle protein synthesis and muscle protein breakdown (proteolysis) is regulated by complex signalling pathways that leads to an overall negative protein balance in skeletal muscle after a burn injury. Research concerning these molecular mechanisms is still scarce and inconclusive, understanding of which, if any, molecular mechanisms contribute to muscle wasting is of fundamental importance in designing of therapeutic interventions for burn patients as well. This review not only summarizes our present knowledge of the molecular mechanisms that underpin muscle protein balance but also summarizes the effects of exercise on muscle wasting post-burn as promising strategy to counteract the detrimental effects on skeletal muscle. Future research focusing on the pathways causing post-burn muscle wasting and the different effects of exercise on them is needed to confirm this hypothesis and to lay the foundation of therapeutic strategies.
Collapse
Affiliation(s)
- Dorien Dombrecht
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Ulrike Van Daele
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Birgit Van Asbroeck
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - David Schieffelers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Nick Gebruers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Multidisciplinary Edema Clinic, Antwerp University Hospital, Edegem, Belgium
| | - Jill Meirte
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Eric van Breda
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Ju Y, Bu D, Li B, Cheng D. Protective function and mechanisms of soybean peptides on aluminum maltolate induced brain and liver toxicity on C57BL/6 mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
11
|
Zhang Y, Zhang C, Zhu S, Wang J, Li H, Liu X. Identification and characterization of soybean peptides and their fractions used by Lacticaseibacillus rhamnosus Lra05. Food Chem 2022; 401:134195. [PMID: 36116301 DOI: 10.1016/j.foodchem.2022.134195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Soybean peptides were reported to promote the growth and metabolism of Lacticaseibacillus rhamnosus (L. rhamnosus) Lra05. However, the relationship between L. rhamnosus Lra05 and the characteristics of soybean peptides is still unclear. Therefore, digested soybean peptides (dPEP) after 36 h utilization by L. rhamnosus Lra05 were identified and analyzed. We found that L. rhamnosus Lra05 tends to utilize hydrophobic peptides with three to five amino acids residues, and hydrophilic peptides with more than five residues. They also prefer peptides with proline at penultimate C-terminal position or arginine at ultimate C-terminal position. Moreover, fraction 1 (F1) and fraction 7 (F7) acquired from dPEP using RP-HPLC exhibited the strongest growth and metabolism promoting effects, and the utilized characteristics of F1 and F7 were similar with those of dPEP. These results explained why soybean peptides could promote L. rhamnosus to some extent and strengthen theoretical basis for the application of soybean peptides as potential prebiotics.
Collapse
Affiliation(s)
- Yinxiao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China1
| | - Chi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China1.
| | - Shuya Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China1
| | - Jingyi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China1
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China1
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China1.
| |
Collapse
|
12
|
Yu Y, Zhang J, Wang J, Wang J, Chai J. Effect of blended protein nutritional support on reducing burn-induced inflammation and organ injury. Nutr Res Pract 2022; 16:589-603. [PMID: 36238375 PMCID: PMC9523203 DOI: 10.4162/nrp.2022.16.5.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/02/2021] [Accepted: 03/25/2022] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jiake Chai
- Burn Institute, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| |
Collapse
|
13
|
Deng Z, Yang Z, Peng J. Role of bioactive peptides derived from food proteins in programmed cell death to treat inflammatory diseases and cancer. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34694177 DOI: 10.1080/10408398.2021.1992606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bioactive peptides are specific peptide which usually contains 2-20 amino acid residues and actively exerts various functions and biological activities and ultimately affect health. Programmed cell deaths are some styles of cell death discovered in recent years, which is the key to tissue development and balance, eliminating excess, damaged or aging cells. More importantly, programmed cell death is a potential way to treat inflammatory diseases and cancer. In this review, through screening references from 2015 to present, we introduce the effect of bioactive peptides derived from food proteins on inflammatory diseases or cancer through regulating programmed cell deaths, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. And this review also introduces the targets of these bioactive peptides to regulate programmed cell death. The purpose of this review is to help to expand the prospective applications of bioactive peptides in the field of inflammatory disease and cancer to provide some guidance.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
14
|
Franco-Romero A, Sandri M. Role of autophagy in muscle disease. Mol Aspects Med 2021; 82:101041. [PMID: 34625292 DOI: 10.1016/j.mam.2021.101041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
Beside inherited muscle diseases many catabolic conditions such as insulin resistance, malnutrition, cancer growth, aging, infections, chronic inflammatory status, inactivity, obesity are characterized by loss of muscle mass, strength and function. The decrease of muscle quality and quantity increases morbidity, mortality and has a major impact on the quality of life. One of the pathogenetic mechanisms of muscle wasting is the dysregulation of the main protein and organelles quality control system of the cell: the autophagy-lysosome. This review will focus on the role of the autophagy-lysosome system in the different conditions of muscle loss. We will also dissect the signalling pathways that are involved in excessive or defective autophagy regulation. Finally, the state of the art of autophagy modulators that have been used in preclinical or clinical studies to ameliorate muscle mass will be also described.
Collapse
Affiliation(s)
- Anais Franco-Romero
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy; Myology Center, University of Padova, via G. Colombo 3, 35100, Padova, Italy; Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
15
|
Nutraceuticals in the Prevention and Treatment of the Muscle Atrophy. Nutrients 2021; 13:nu13061914. [PMID: 34199575 PMCID: PMC8227811 DOI: 10.3390/nu13061914] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Imbalance of protein homeostasis, with excessive protein degradation compared with protein synthesis, leads to the development of muscle atrophy resulting in a decrease in muscle mass and consequent muscle weakness and disability. Potential triggers of muscle atrophy include inflammation, malnutrition, aging, cancer, and an unhealthy lifestyle such as sedentariness and high fat diet. Nutraceuticals with preventive and therapeutic effects against muscle atrophy have recently received increasing attention since they are potentially more suitable for long-term use. The implementation of nutraceutical intervention might aid in the development and design of precision medicine strategies to reduce the burden of muscle atrophy. In this review, we will summarize the current knowledge on the importance of nutraceuticals in the prevention of skeletal muscle mass loss and recovery of muscle function. We also highlight the cellular and molecular mechanisms of these nutraceuticals and their possible pharmacological use, which is of great importance for the prevention and treatment of muscle atrophy.
Collapse
|
16
|
Yu Y, Gaine GK, Zhou L, Zhang J, Wang J, Sun B. The classical and potential novel healthy functions of rice bran protein and its hydrolysates. Crit Rev Food Sci Nutr 2021; 62:8454-8466. [PMID: 34028308 DOI: 10.1080/10408398.2021.1929057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rice bran protein (RBP) is a plant protein obtained from rice bran, a byproduct produced during rice milling process. It has been proved to be a high quality protein due to containing all of the essential amino acids and the content closing to the FAO/WHO recommended ideal pattern. Recent studies indicated that RBP and rice bran protein hydrolysates (RBPH) served variety biological functions. In this review, we summarized the classical functions of RBP and RBPH mediating antioxidant activity, chronic diseases prevention (such as antihypertensive effect, anti-diabetic effect, cholesterol-lowering activity), and anti-cancer effect. We also proposed their potential novel functions on anti-obesity effect, attenuating sarcopenia, promoting wound healing. Furthermore, the potential benefit to coronavirus disease 2019 (COVID-19) patients was put forward, which might provide new strategy for development and utilization of RBP and RBPH.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Goutom Kumar Gaine
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
17
|
Enhancement of nutritional soy protein and peptide supplementation on skin repair in rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
Yi G, Li H, Li Y, Zhao F, Ying Z, Liu M, Zhang J, Liu X. The protective effect of soybean protein-derived peptides on apoptosis via the activation of PI3K-AKT and inhibition on apoptosis pathway. Food Sci Nutr 2020; 8:4591-4600. [PMID: 32884739 PMCID: PMC7455986 DOI: 10.1002/fsn3.1776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Soybean protein-derived peptides (SBP) are a rich source of various bioactive peptides with multiple health benefits. However, the prospective effects of SBP on human cells are still unclear. Therefore, this article investigated the effects of small molecular weight SBP on MG132-induced apoptosis in RAW264.7 cells. SBP inhibited MG132-induced apoptosis of RAW264.7 cells in a dose-dependent manner by flow cytometry. To further study its molecular mechanisms, Western blot analysis demonstrated that SBP could activate the PI3K-AKT pathway by increasing the phosphorylation of PI3K and AKT and inhibiting apoptosis pathway by downregulating the expressions of pro-apoptotic proteins of Bim, Bax, Fas, and Fasl and promoting the expressions of anti-apoptotic proteins of Bcl-xL and Bcl-2. These results indicated the protective effect of SBP on MG132-induced apoptosis in RAW264.7 cells.
Collapse
Affiliation(s)
- Guofu Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - You Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - Fen Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - Zhiwei Ying
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - Menglan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| |
Collapse
|
19
|
Zhang J, Li W, Ying Z, Zhao D, Yi G, Li H, Liu X. Soybean protein-derived peptide nutriment increases negative nitrogen balance in burn injury-induced inflammatory stress response in aged rats through the modulation of white blood cells and immune factors. Food Nutr Res 2020; 64:3677. [PMID: 32694965 PMCID: PMC7346896 DOI: 10.29219/fnr.v64.3677] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND As an important nutrient, soybean protein-derived peptides (SPP) affect the immune function of animals. OBJECTIVE This study describes the effects of nutrient supplementation with SPP on the negative nitrogen balance in the burn injury-induced inflammatory response of aged rats. DESIGN Soybean protein isolate (SPI) was hydrolyzed to obtain SPP. A negative nitrogen-balance aged rat model and a major full-thickness 30% total body surface area (TBSA) burn-injury rat model were utilized. RESULTS The results show that SPP can increase the speed and ability of inflammatory stress by adjusting white blood cell counts. Soybean protein-derived peptides significantly increased serum immunoglobulin M (IgM), immunoglobulin G (IgG) and immunoglobulin A (IgA) levels; significantly decreased serum interleukin-1 beta (IL-β), tumor necrosis factor-alpha (TNF-α) and regulated upon activation normal T-cell expressed and secreted (RANTES) levels. These results give conclusive evidence that SPP has a significantly positive effect in improving the immune function on the condition of negative nitrogen balance with burn-injury, and reducing excessive inflammation. CONCLUSIONS Nutrient supplementation of SPP can, therefore, be used as an adjuvant treatment to inhibit the development and severity of inflammatory reactions caused by burns, providing a novel therapy for the treatment and positive prognosis of burn patients.
Collapse
Affiliation(s)
- Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Wenhui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Zhiwei Ying
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Di Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Guofu Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
20
|
Yi G, Li H, Liu M, Ying Z, Zhang J, Liu X. Soybean protein-derived peptides inhibit inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPK-JNK and NF-kappa B activation. J Food Biochem 2020; 44:e13289. [PMID: 32537742 DOI: 10.1111/jfbc.13289] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
This study aimed to determine the effect of soybean protein-derived peptides (SBP) on the inhibition of lipopolysaccharide (LPS)-induced RAW264.7 cell inflammation. The mRNA of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), Lymphocyte Antigen 96 (LY96), and nuclear factor-κB (NF-κB) were detected with RT-qPCR. The concentrations of cytokines (TNF-α, IL-6, and IL-1β) secreted were detected by ELISA Kit. The results indicated that SBP inhibited the inflammatory stress induced by LPS in RAW264.7 cells. Western blot analysis was used to examine this anti-inflammatory molecular mechanism. The findings showed that SBP impeded the increase of toll-like receptor 4 activity by restricting LY96, while also inhibiting the mitogen-activated protein kinase-c-Jun N-terminal kinase pathway in cells, as well as LPS-induced NF-κB activation caused by the degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα). Consequently, the release of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) was inhibited, preventing LPS-induced inflammation of RAW 264.7 cells. Therefore, this research highlighted the potential application of SBP in the development of anti-inflammatory foods that prevented inflammatory-immune diseases. PRACTICAL APPLICATIONS: Inflammation is the root cause of almost all pathology and is related to many human diseases, including arthritis, obesity, cancer and atherosclerosis. Therefore, the development of products that can regulate and intervene inflammation has a broad application prospect. Soybean protein and soybean peptide have many functional properties, including immunoregulation, anti-inflammatory, anti-oxidation and so on. However, there are still some shortcomings in the development of soy protein supplements, such as solubility and absorption. Compared with soybean protein, derived peptide is easy to digest, and has high solubility. As a good nutritional supplement, the nutritional support of soybean protein-derived peptides may help to reduce inflammation and improve the level of cytokines combined with drugs.
Collapse
Affiliation(s)
- Guofu Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Menglan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Zhiwei Ying
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
21
|
Wen C, Li F, Guo Q, Zhang L, Duan Y, Wang W, Li J, He S, Chen W, Yin Y. Protective effects of taurine against muscle damage induced by diquat in 35 days weaned piglets. J Anim Sci Biotechnol 2020; 11:56. [PMID: 32514342 PMCID: PMC7268319 DOI: 10.1186/s40104-020-00463-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background Oxidative stress is a key factor that influences piglets’ health. Taurine plays an imperative role in keeping the biological system from damage. This study was conducted to investigate the protective effect of taurine against muscle injury due to the secondary effect of diquat toxicity. Results Our study found that taurine effectively and dose-dependently alleviated the diquat toxicity induced rise of feed/gain, with a concurrent improvement of carcass lean percentage. The plasma content of taurine was considerably increased in a dose-dependent manner. Consequently, dietary taurine efficiently improved the activity of plasma antioxidant enzymes. Furthermore, taurine attenuated muscle damage by restoring mitochondrial micromorphology, suppressing protein degradation and reducing the percentage of apoptotic cells in the skeletal muscle. Taurine supplementation also suppressed the genes expression levels of the antioxidant-, mitochondrial biogenesis-, and muscle atrophy-related genes in the skeletal muscle of piglets with oxidative stress. Conclusions These results showed that the dose of 0.60% taurine supplementation in the diet could attenuate skeletal muscle injury induced by diquat toxicity. It is suggested that taurine could be a potential nutritional intervention strategy to improve growth performance.
Collapse
Affiliation(s)
- Chaoyue Wen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China.,Laboratory of Animal Nutrition and Human Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081 Hunan China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China.,Laboratory of Animal Nutrition and Human Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081 Hunan China
| | - Jianzhong Li
- Laboratory of Animal Nutrition and Human Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081 Hunan China
| | - Shanping He
- Laboratory of Animal Nutrition and Human Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081 Hunan China
| | - Wen Chen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China
| |
Collapse
|
22
|
Soybean peptides promote yoghurt fermentation and quality. Biotechnol Lett 2020; 42:1927-1937. [PMID: 32419046 DOI: 10.1007/s10529-020-02912-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES This research paper was to investigate the influence of soybean peptides addition on viable count of lactic acid bacteria, physicochemical parameters, flavor, and sensory evaluation of yoghurt. RESULTS The number of fermenting strains (Streptococcus thermophilus + Lactobacillus delbrueckii subsp. bulgaricus) cells in yoghurt (stored at 4 °C for 19 days) added with 0.2% (w/v) of soybean peptides (808.34 Da) reached 1.4 times higher bacterial number than in the control group. A total of 34 volatile substances were detected in this study, while there were 22 volatiles occurred in the control group yoghurt, 30 volatiles were detected in yoghurt added with 0.2% soybean peptides. There was no significant difference in sensory evaluation (p > 0.05) between the yoghurt with and without soybean peptides. CONCLUSIONS In our study, the addition of soybean peptides (0.2%) can be effective both in maintaining the viable bacterial count and yoghurt quality.
Collapse
|
23
|
Ultra high temperature (UHT) processability of high protein dispersions prepared from milk protein-soy protein hydrolysate mixtures. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Zhang J, Yu Y, Wang J. Protein Nutritional Support: The Classical and Potential New Mechanisms in the Prevention and Therapy of Sarcopenia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4098-4108. [PMID: 32202113 DOI: 10.1021/acs.jafc.0c00688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sarcopenia commonly occurs in the elderly and patients with wasting diseases. The main reason is an imbalance in protein metabolism (protein degradation exceeding protein synthesis). It causes a serious decline in muscle strength and motion ability, even leading to long-term bed rest. Recent studies indicate that nutritional support is beneficial for ameliorating sarcopenia and restoring muscle function. This review will summarize the classical mechanisms of protein nutritional support for alleviating sarcopenia, such as modulating the ubiquitin-proteasome system, oxidative response, and cell autophagy, as well as the potential new mechanisms, including altering miRNA profiles and gut microbiota. In addition, the clinical application and outcome of protein nutritional support in the elderly and patients with wasting diseases are also introduced. Protein nutritional support is expected to provide new approaches for the prevention and adjuvant therapy of sarcopenia.
Collapse
Affiliation(s)
- Jingjie Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Haidian District, Beijing 100081, People's Republic of China
| | - Yonghui Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, People's Republic of China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Haidian District, Beijing 100081, People's Republic of China
| |
Collapse
|
25
|
Yi G, Din JU, Zhao F, Liu X. Effect of soybean peptides against hydrogen peroxide induced oxidative stress in HepG2 cells via Nrf2 signaling. Food Funct 2020; 11:2725-2737. [DOI: 10.1039/c9fo01466g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to determine the effects of soybean protein hydrolysates against intracellular antioxidant activity.
Collapse
Affiliation(s)
- Guofu Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Jalal ud Din
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Fen Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| |
Collapse
|
26
|
Yi G, Safdar B, Zhang Y, Li Y, Liu X. A study of the mechanism of small-molecule soybean-protein-derived peptide supplement to promote sleep in a mouse model. RSC Adv 2020; 10:11264-11273. [PMID: 35495343 PMCID: PMC9050437 DOI: 10.1039/d0ra00389a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 11/21/2022] Open
Abstract
Here, the effects of dietary supplementation with small-molecule soybean-protein-derived peptide (SBP) on sleep duration in mice are described.
Collapse
Affiliation(s)
- Guofu Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Bushra Safdar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Yihao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - You Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| |
Collapse
|
27
|
Yu Y, Yang L, Han S, Wu Y, Liu L, Chang Y, Wang X, Chai J. MIR-190B Alleviates Cell Autophagy and Burn-Induced Skeletal Muscle Wasting via Modulating PHLPP1/Akt/FoxO3A Signaling Pathway. Shock 2019; 52:513-521. [PMID: 30407372 DOI: 10.1097/shk.0000000000001284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Cell autophagy is an important material recycling process and is involved in regulating many vital activities under both physiological and pathological conditions. However, the mechanism of autophagy regulating burn-induced skeletal muscle wasting still needs to be elucidated. METHODS The rat burn model with 30% total body surface area and L6 cell line were used in this study. An immunofluorescence assay was used to detect autophagic levels. MicroRNA array and real-time PCR were employed to measure miR-190b levels, and its influence on PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) protein translation was estimated using luciferase reporter assay. The expression levels of autophagy-related proteins were analyzed by Western blot. Skeletal muscle wasting was evaluated by the ratio of tibias anterior muscle weight to body weight. RESULTS Our study demonstrates that burn injury promotes expression of the autophagy-related proteins light chain 3 (LC3) and Beclin-1, suppresses expression of Akt and Forkhead box O (FoxO) 3a protein phosphorylation, and increases PHLPP1 protein level which is required for Akt dephosphorylation. miR-190b, the regulator of PHLPP1 protein translation, also significantly decreases after burn injury. Ectopic expression of miR-190b in L6 myoblast cell downregulates PHLPP1 protein expression, elevates Akt and FoxO3a phosphorylation, and subsequently reduces cell autophagy. Finally, suppressing autophagy with 3-methyladenine represses the protein expression of LC3 and Beclin-1 and mitigates burn-induced skeletal muscle wasting. CONCLUSION Burn injury induced skeletal muscle cell autophagy and subsequently resulted in skeletal muscle wasting via regulating miR-190b/PHLPP1/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Yonghui Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Longlong Yang
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Shaofang Han
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Yushou Wu
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Lingying Liu
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Yang Chang
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Xiaoteng Wang
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Jiake Chai
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Cui W, Liu CX, Zhang YC, Shen Q, Feng ZH, Wang J, Lu SF, Wu J, Li JX. A novel oleanolic acid derivative HA-19 ameliorates muscle atrophy via promoting protein synthesis and preventing protein degradation. Toxicol Appl Pharmacol 2019; 378:114625. [PMID: 31201822 DOI: 10.1016/j.taap.2019.114625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Muscle atrophy refers to a decrease in the size of muscles in the body, occurs in certain muscles with inactivity in many diseases and lacks effective therapies up to date. Natural products still play an important role in drug discovery. In the present study, derivatives of a natural product, oleanolic acid, were screened with myoblast differentiation and myotube atrophy assays, respectively. Results revealed that one of the derivatives, HA-19 showed the most potent anti-muscle atrophy activity, and was used for further studies. We demonstrated that HA-19 led to the increase of the protein synthesis by activating mechanistic target of rapamycin complex 1 (mTORC1)/p70 S6K pathways, and also enhanced myoblast proliferation and terminal differentiation via up-regulating of the myogenic transcription factors Pax7, MyoD and Myogenin. The interesting thing was that HA-19 also suppressed protein degradation to prevent myotube atrophy by down-regulating negative growth factors, FoxO1, MuRF1 and Atrogin-1. The results were also supported by puromycin labelling and protein ubiquitination assays. These data revealed that HA-19 possessed a "dual effect" on inhibition of muscle atrophy. In disuse-induced muscle atrophy mice model, HA-19 treatment significantly increased the weights of bilateral tibialis anterior (TA), gastrocnemius (Gastroc.), quadriceps (Quad.), suggesting the effectiveness of HA-19 to remit disuse-induced muscle atrophy. Our finding demonstrated that HA-19 has a great potential as an inhibitor or lead compound for the anti-muscle atrophy drug discovery.
Collapse
Affiliation(s)
- Wei Cui
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-Xi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen-Hua Feng
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing 210008, China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
29
|
Zhao F, Liu W, Yu Y, Liu X, Yin H, Liu L, Yi G. Effect of small molecular weight soybean protein-derived peptide supplementation on attenuating burn injury-induced inflammation and accelerating wound healing in a rat model. RSC Adv 2019; 9:1247-1259. [PMID: 35518054 PMCID: PMC9059567 DOI: 10.1039/c8ra09036j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
The populations most afflicted by burn injuries have limited abilities to support the significant specialized requirements and costs for acute and long-term burn injury care. This article describes the results of optimizing the use of readily absorbed small molecular weight soybean protein enzymolysis-derived peptide to attenuate rat burn injury-induced inflammation and accelerate wound healing. A major full-thickness 30% total body surface area burn-injury rat model was utilized and the systemic white blood cell (WBC) counts, the relative level of stimulation index of respiratory burst, and the inflammatory markers procalcitonin (PCT), tumor necrosis factor-α (TNF-α), chemokine (C–C motif) ligand 3 (CCL-3), chemokine (C–C motif) ligand 11 (CCL-11) and interleukin-10 (IL-10) were assessed. The burn injury-induced neutrophil and macrophage immune cell infiltration of the cutaneous tissues was detected by immunohistochemical analysis of the protein markers myeloperoxidase (MPO) and cluster of differentiation 68 (CD-68). The local induction of the burn injury-induced toll-like receptor 4/nuclear factor kappa-light-chain-enhancer of activated B (TLR4/NF-κB) signaling pathway in the effected cutaneous tissues was determined by the quantification of the protein expression of TLR4 and phosphorylated NF-κB/p65 using Western blots. In addition, burn wound size and healing rate were assessed biweekly for 8 weeks by imaging and measuring the burn wound surface area, and the angiogenesis protein marker of cluster of differentiation 31 (CD-31) expression in cutaneous tissues was also detected by immunohistochemical analysis. The results showed that nutrient supplementation with optimized readily absorbed small molecular weight soybean protein-derived peptide resulted in a dramatic anti-inflammatory effect as evidenced by the significant increase in the burn injury-induced systemic white blood cell counts and their relative level of stimulation index of respiratory burst, reduction in the burn injury-induced activation of NF-κB transcriptional signaling pathways, significant reduction in the local burn injury-induced cutaneous infiltration of neutrophils and macrophages at all measured time points, reduction in wound size and improved rate of burn injury wound healing with increased CD-31 protein expression. These results indicated that dietary supplementation with small molecular weight soybean-derived peptides could be used as an adjunct therapy in burn injury management to reduce inflammation and improve overall patient outcomes. The populations most afflicted by burn injuries have limited abilities to support the significant specialized requirements and costs for acute and long-term burn injury care.![]()
Collapse
Affiliation(s)
- Fen Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Wei Liu
- Burn Institute
- The First Affiliated Hospital of PLA General Hospital
- Beijing 100048
- China
| | - Yonghui Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Huinan Yin
- Burn Institute
- The First Affiliated Hospital of PLA General Hospital
- Beijing 100048
- China
| | - Lingying Liu
- Burn Institute
- The First Affiliated Hospital of PLA General Hospital
- Beijing 100048
- China
| | - Guofu Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| |
Collapse
|
30
|
Pan F, Wang L, Cai Z, Wang Y, Wang Y, Guo J, Xu X, Zhang X. Soybean Peptide QRPR Activates Autophagy and Attenuates the Inflammatory Response in the RAW264.7 Cell Model. Protein Pept Lett 2019; 26:301-312. [PMID: 30678609 DOI: 10.2174/0929866526666190124150555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND There are few studies on the autophagy and inflammatory effects of soy peptides on the inflammatory cell model. Further insight into the underlying relationship of soybean peptides and autophagy needs to be addressed. Therefore, it is worthwhile investigating the possible mechanisms of soybean peptides, especially autophagy and the inflammatory effects. OBJECTIVE In this study, we used a RAW264.7 cell inflammation model to study the inhibitory effect and mechanism of soybean peptide QRPR on inflammation. METHODS We used LPS-induced inflammation model in RAW264.7 cells to study the inhibitory effect and mechanism of soybean peptide QRPR on inflammation. First, Cell viability was determined by cell activity assay. Subsequently, the concentrations of the inflammatory cytokines IL-6 and TNF-α were measured by ELISA. IL-6, TNF-α, Beclin1, LC3, P62, PIK3, AKT, p-AKT, pmTOR and mTOR protein expression were detected by western-blot. PIK3, AKT and mTOR gene expression level were quantified by quantitative real-time PCR. Double-membrane structures of autophagosomes and autolysosomes were observed by transmission electron microscopy. The PI3K/AKT/mTOR signaling pathway in LPS-induced RAW264.7 cells was speculated when the autophagy was activated. RESULTS The results showed that QRPR activates autophagy in the inflammatory cell model and that the inhibitory effect of QRPR on inflammation is reduced after autophagy was inhibited. Western- blot and real-time PCR results indicated that QRPR activates autophagy in LPS-induced RAW264.7 cells by modulating the PI3K/AKT/mTOR signaling pathway, and it shows a significant time dependence. CONCLUSION This study indicated that the soybean peptide QRPR activates autophagy and attenuates the inflammatory response in the LPS-induced RAW264.7 cell model.
Collapse
Affiliation(s)
- Fengguang Pan
- Laboratory of Nutrition and Functional Food, College of Food science and Engineering, Jilin University, Changchun 130062, China
| | - Lin Wang
- Laboratory of Nutrition and Functional Food, College of Food science and Engineering, Jilin University, Changchun 130062, China
| | - Zhuanzhang Cai
- Laboratory of Nutrition and Functional Food, College of Food science and Engineering, Jilin University, Changchun 130062, China
| | - Yinan Wang
- Laboratory of Nutrition and Functional Food, College of Food science and Engineering, Jilin University, Changchun 130062, China
| | - Yanfei Wang
- Laboratory of Nutrition and Functional Food, College of Food science and Engineering, Jilin University, Changchun 130062, China
| | - Jiaxin Guo
- Laboratory of Nutrition and Functional Food, College of Food science and Engineering, Jilin University, Changchun 130062, China
| | - Xiangyu Xu
- Laboratory of Nutrition and Functional Food, College of Food science and Engineering, Jilin University, Changchun 130062, China
| | - Xiaoge Zhang
- Laboratory of Nutrition and Functional Food, College of Food science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|