1
|
Yang X, Nabi Mandal MS, Diao H, Du J, Pu X, Li X, Yang J, Zeng Y, Li Z, Li J, Hossain A, Ali MK. Geographic differences and variation of functional components of brown rice in 690 mini-core collections from global germplasms. Heliyon 2023; 9:e23035. [PMID: 38149206 PMCID: PMC10750027 DOI: 10.1016/j.heliyon.2023.e23035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Objective To understand the geographic differences and variations in the functional components of brown rice cores collected from global rice germplasms. Methods Four functional components, γ-aminobutyric acid (GABA), resistant starch (RS), total flavonoids, and alkaloids, in brown rice from 690 mini-core collections from 31 countries from five continents and the International Rice Research Institute, were analyzed using a spectrophotometry colorimetric method, and the results were statistically validated. Conclusion The highest average amounts of functional components were obtained in Asian germplasms, except for GABA, and total flavonoids were highest in brown rice from Europe and Oceania, followed by Asia. The highest coefficient of variation for GABA was observed in Asia; that for RS and total flavonoids was observed in Africa, followed by Asia; and that for alkaloids was observed in America, followed by Asia. Overall, Asian countries were the most prominent and representative zones with the highest genotypic potential for functional components of brown rice. Forty-one rice accessions with enriched functional components originated mostly from biodiversity-rich areas in China, followed by those in the Philippines. Late sowing favored the enrichment of these components in brown rice. The current study provides a reference for rice breeding with enriched functional constituents, and guidelines for screening functional rice that could be used for human chronic disease research.
Collapse
Affiliation(s)
- Xiaomeng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Md Siddikun Nabi Mandal
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
- Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh
| | - Henan Diao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, Heilongjiang, 164300, China
| | - Juan Du
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Xiaoying Pu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Xia Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Jiazhen Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jianbin Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Akbar Hossain
- Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh
| | - Muhammad Kazim Ali
- Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
3
|
Characterization and selection of functional yeast strains during sourdough fermentation of different cereal wholegrain flours. Sci Rep 2020; 10:12856. [PMID: 32732890 PMCID: PMC7393511 DOI: 10.1038/s41598-020-69774-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
The increasing demand for healthy baked goods boosted studies on sourdough microbiota with beneficial metabolic traits, to be used as potential functional starters. Here, 139 yeasts isolated from cereal-based fermented foods were in vitro characterized for their phytase and antioxidant activities. The molecular characterization at strain level of the best 39 performing isolates showed that they did not derive from cross contamination by baker’s yeast. Afterwards, the 39 isolates were in vivo analyzed for their leavening ability, phytase activity and polyphenols content using five different wholegrain flours, obtained from conventional and pigmented common wheat, emmer and hull-less barley. Combining these findings, through multivariate permutation analysis, we identified the 2 best performing strains, which resulted diverse for each flour. Doughs singly inoculated with the selected strains were further analyzed for their antioxidant capacity, phenolic acids, xanthophylls and anthocyanins content. All the selected yeasts significantly increased the total antioxidant activity, the soluble, free and conjugated, forms of phenolic acids and anthocyanins of fermented doughs. This study revealed the importance of a specific selection of yeast strains for wholegrain flours obtained from different cereals or cultivars, in order to enhance the pro-technological, nutritional and nutraceutical traits of fermented doughs.
Collapse
|
4
|
Lux PE, Freiling M, Stuetz W, von Tucher S, Carle R, Steingass CB, Frank J. (Poly)phenols, Carotenoids, and Tocochromanols in Corn ( Zea mays L.) Kernels As Affected by Phosphate Fertilization and Sowing Time. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:612-622. [PMID: 31903750 DOI: 10.1021/acs.jafc.9b07009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Corn (Zea mays L.) growth and development is often limited by the availability of phosphate. We thus hypothesized that phosphate fertilization may increase the contents of (poly)phenols, carotenoids, and tocochromanols (vitamin E) in corn grains. Corn plants cultivated on a soil fertilized with 44 kg phosphorus/ha were compared to plants grown on soil with low plant-available phosphate (1.6 mg CAL-P/100 g of soil), each sown early (April) and late (May) in a randomized field experiment. HPLC-DAD-(HR)-ESI-MSn revealed 19 soluble and 10 insoluble (poly)phenols, comprising phenolic acids, phenolic amines, diferulic, and triferulic acids in corn grains. Contents of individual (poly)phenols, carotenoids, and tocochromanols in whole grains were significantly (p < 0.05) increased by sowing time, but not by phosphate fertilization. In conclusion, low phosphate availability did not impair the biosynthesis of (poly)phenols, carotenoids, and tocochromanols in corn grains.
Collapse
Affiliation(s)
- Peter E Lux
- Institute of Nutritional Sciences, Chair of Food Biofunctionality , University of Hohenheim , Garbenstrasse 28 , 70599 Stuttgart , Germany
| | - Markus Freiling
- Department of Plant Sciences, Chair of Plant Nutrition , Technical University of Munich , Emil-Ramann-Strasse 2 , 85354 Freising , Germany
| | - Wolfgang Stuetz
- Institute of Nutritional Sciences, Chair of Food Biofunctionality , University of Hohenheim , Garbenstrasse 28 , 70599 Stuttgart , Germany
| | - Sabine von Tucher
- Department of Plant Sciences, Chair of Plant Nutrition , Technical University of Munich , Emil-Ramann-Strasse 2 , 85354 Freising , Germany
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis , University of Hohenheim , Garbenstrasse 25 , 70599 Stuttgart , Germany
- Biological Science Department, Faculty of Science , King Abdulaziz University , P.O. Box 80257, Jeddah 21589 , Saudi Arabia
| | - Christof B Steingass
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis , University of Hohenheim , Garbenstrasse 25 , 70599 Stuttgart , Germany
- Department of Beverage Research, Chair Analysis & Technology of Plant-Based Foods , Geisenheim University , Von-Lade-Strasse 1 , 65366 Geisenheim , Germany
| | - Jan Frank
- Institute of Nutritional Sciences, Chair of Food Biofunctionality , University of Hohenheim , Garbenstrasse 28 , 70599 Stuttgart , Germany
| |
Collapse
|