1
|
Fuchs A, Romeis D, Hupfeld E, Sieber V. Biocatalytic Conversion of Carrageenans for the Production of 3,6-Anhydro-D-galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5816-5827. [PMID: 38442258 PMCID: PMC10958521 DOI: 10.1021/acs.jafc.3c08613] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Marine biomass stands out as a sustainable resource for generating value-added chemicals. In particular, anhydrosugars derived from carrageenans exhibit a variety of biological functions, rendering them highly promising for utilization and cascading in food, cosmetic, and biotechnological applications. However, the limitation of available sulfatases to break down the complex sulfation patterns of carrageenans poses a significant limitation for the sustainable production of valuable bioproducts from red algae. In this study, we screened several carrageenolytic polysaccharide utilization loci for novel sulfatase activities to assist the efficient conversion of a variety of sulfated galactans into the target product 3,6-anhydro-D-galactose. Inspired by the carrageenolytic pathways in marine heterotrophic bacteria, we systematically combined these novel sulfatases with other carrageenolytic enzymes, facilitating the development of the first enzymatic one-pot biotransformation of ι- and κ-carrageenan to 3,6-anhdyro-D-galactose. We further showed the applicability of this enzymatic bioconversion to a broad series of hybrid carrageenans, rendering this process a promising and sustainable approach for the production of value-added biomolecules from red-algal feedstocks.
Collapse
Affiliation(s)
- Alexander Fuchs
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Dennis Romeis
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Enrico Hupfeld
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Volker Sieber
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
- SynBioFoundry@TUM, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany
- Catalytic
Research Center, Ernst-Otto-Fischer-Straße1, 85748 Garching, Germany
- School
of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia 4072, Australia
| |
Collapse
|
2
|
Shen J, Dan M, Li Y, Tao X, Zhao G, Wang D. Controllable and complete conversion of agarose into oligosaccharides and monosaccharides by microwave-assisted hydrothermal and enzymatic hydrolysis and antibacterial activity of agaro-oligosaccharides. Int J Biol Macromol 2023; 251:126319. [PMID: 37582437 DOI: 10.1016/j.ijbiomac.2023.126319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Hydrolysis of agar or agarose can yield two types of oligosaccharides: agaro-oligosaccharides (AOS) and neoagaro-oligosaccharides (NAOS). These oligosaccharides have various biological activities and promising applications in the future food industry and pharmaceuticals. In this study, we prepared AOS from agarose by microwave-assisted hydrothermal hydrolysis and then used a commercial β-galactosidase to treat AOS for producing NAOS. A complete conversion from agarose to AOS or NAOS can be achieved by microwave hydrothermal treatment and one-step enzyme reaction, and the production process was completely green. In addition, we combined β-galactosidase and α-neoagarobiose hydrolase from Saccharophagus degradans 2-40 (SdNABH) to treat AOS, and AOS was completely converted into monosaccharides. Then the results of the inhibitory activity of AOS on the growth of Streptococcus mutans showed that AOS might be a good potential sugar substitute for dental caries prevention. This study provides an efficient approach for the production of multiple mixed degrees of polymerization (DP) of pure AOS and NAOS without requiring acid catalyst and agarases while simplifying the production processes and reducing costs.
Collapse
Affiliation(s)
- Ji Shen
- College of Food Science, Southwest University, Chongqing 400715, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, PR China
| | - Meiling Dan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoqi Tao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, PR China.
| |
Collapse
|
3
|
Pathiraja D, Park B, Kim B, Stougaard P, Choi IG. Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol 2023; 12:1782-1793. [PMID: 37265394 DOI: 10.1021/acssynbio.3c00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Marine red algal biomass is a promising feedstock for sustainable production of value-added chemicals. However, the major constituents of red algal biomass, such as agar and carrageenan, are not easily assimilated by most industrial metabolic chassis developed to date. Synthetic biology offers a solution by utilizing nonmodel organisms as metabolic chassis for consolidated biological processes. In this study, the marine heterotrophic bacterium Pseudoalteromonas atlantica T6c was harnessed as a metabolic chassis to produce value-added chemicals from the affordable red algal galactans or agaropectin, a byproduct of industrial agarose production. To construct a heterologous gene expression device in P. atlantica T6c, promoters related to agar metabolism were screened from the differentially expressed genes using RNA-Seq analysis. The expression device was built and tested with selected promoters fused to a reporter gene and tuned by incorporation of a cognate repressor predicted from the agar-specific polysaccharide utilization locus. The feasibility of the marine bacterial metabolic chassis was examined by introducing the biosynthetic gene clusters of β-carotene and violacein. Our results demonstrate that the metabolic chassis platform enables direct conversion of low-cost red algal galactans or industrial waste agaropectin into valuable bioactive pigments without any pretreatment of biomass. The developed marine bacterial chassis could potentially be used in a biorefinery framework to produce value-added chemicals from marine algal galactans.
Collapse
Affiliation(s)
- Duleepa Pathiraja
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Byeonghyeok Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Bogun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Peter Stougaard
- Department of Environmental Sciences, Aarhus University, DK-4000, Rockslide, Denmark
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
4
|
Pathiraja D, Cho J, Stougaard P, Choi IG. Enzymatic Process for the Carrageenolytic Bioconversion of Sulfated Polygalactans into β-Neocarrabiose and 3,6-Anhydro-d-galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:635-645. [PMID: 36580413 DOI: 10.1021/acs.jafc.2c06972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oligosaccharides and anhydro-sugars derived from carrageenan have great potential as functional foods and drugs showing various bioactivities, including antioxidant, anti-inflammatory, antiviral, antitumor, and cytotoxic activities. Although preparation of sulfated carrageenan oligosaccharides by chemical and enzymatic processes has been widely reported, preparation of nonsulfated β-neocarrabiose (β-NC2) and the rare sugar 3,6-anhydro-d-galactose (d-AHG) was not reported in the literature. Based on the carrageenan catabolic pathway in marine heterotrophic bacteria, an enzymatic process was designed and constructed with recombinant κ-carrageenase, GH127/GH129 α-1,3 anhydrogalactosidase, and cell-free extract from marine carrageenolytic bacteria Colwellia echini A3T. The process consisted of three successive steps, namely, (i) depolymerization, (ii) desulfation, and (iii) monomerization, by which carrageenan oligosaccharides, β-NC2, and d-AHG were obtained from κ-carrageenan. Unlike the chemical process, enzymatic hydrolysis yields oligosaccharides with the desired degree of polymerization facilitates specific removal of sulfated groups, free of toxic byproducts, and avoids chemical modifications. The final optimized enzymatic process produced 0.52 g of β-NC2 and 0.24 g of d-AHG from 1 g of κ-carrageenan. The carrageenolytic process designed for the enzymatic hydrolysis of κ-carrageenan can be scaled up for the mass production of bioactive carrageeno-oligosaccharides.
Collapse
Affiliation(s)
- Duleepa Pathiraja
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Junghwan Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Peter Stougaard
- Department of Environmental Sciences, Aarhus University, DK-4000 Rockslide, Denmark
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
5
|
Kim DH, Park SY, Kim KH. Optimal β-galactosidases for producing high-titer 3,6-anhydro-L-galactose from red-algal agarobiose. Appl Microbiol Biotechnol 2022; 106:8111-8120. [PMID: 36399167 DOI: 10.1007/s00253-022-12274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
3,6-Anhydro-L-galactose (L-AHG) is a monomeric sugar in agarose derived from red macroalgae. Owing to its various physiological activities such as anti-inflammation, moisturizing, skin whitening, anti-colon cancer, and anti-cariogenicity, L-AHG is a potential functional ingredient. In our previous study, a simple and efficient two-step L-AHG production process was designed for high-titer L-AHG production, where a single enzyme was used after the liquefaction of agarose by acid prehydrolysis. However, the enzyme used did not completely hydrolyze agarobiose (AB). Therefore, in this study, for the efficient hydrolysis of AB and the high-titer production of L-AHG, various β-galactosidases belonging to glycoside hydrolase families 1, 2, 35, and 42 were compared by testing their substrate specificities and kinetic parameters. Among the five β-galactosidases, Bga42A, originating from Bifidobacterium longum ssp. infantis ATCC 15,697, showed the highest substrate specificity. Consequently, the two-step process utilizing Bga42A as a single enzyme resulted in a high-titer production of L-AHG at 85.9 g/L, demonstrating the feasibility of producing L-AHG from agarose. KEY POINTS: • L-AHG derived from red macroalgae has various physiological activities. • Various β-galactosidases were evaluated to efficiently hydrolyze agarobiose. • Bga42A showed the highest substrate specificity against agarobiose. • The highest amount of L-AHG with 85.9 g/L was simply produced.
Collapse
Affiliation(s)
- Dong Hyun Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - So Young Park
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Tong KTX, Tan IS, Foo HCY, Lam MK, Lim S, Lee KT. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-37. [PMID: 35316983 PMCID: PMC8929714 DOI: 10.1007/s13399-022-02561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players. Graphical abstract
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
7
|
A Novel Auxiliary Agarolytic Pathway Expands Metabolic Versatility in the Agar-Degrading Marine Bacterium Colwellia echini A3 T. Appl Environ Microbiol 2021; 87:e0023021. [PMID: 33811026 DOI: 10.1128/aem.00230-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine microorganisms encode a complex repertoire of carbohydrate-active enzymes (CAZymes) for the catabolism of algal cell wall polysaccharides. While the core enzyme cascade for degrading agar is conserved across agarolytic marine bacteria, gain of novel metabolic functions can lead to the evolutionary expansion of the gene repertoire. Here, we describe how two less-abundant GH96 α-agarases harbored in the agar-specific polysaccharide utilization locus (PUL) of Colwellia echini strain A3T facilitate the versatility of the agarolytic pathway. The cellular and molecular functions of the α-agarases examined by genomic, transcriptomic, and biochemical analyses revealed that α-agarases of C. echini A3T create a novel auxiliary pathway. α-Agarases convert even-numbered neoagarooligosaccharides to odd-numbered agaro- and neoagarooligosaccharides, providing an alternative route for the depolymerization process in the agarolytic pathway. Comparative genomic analysis of agarolytic bacteria implied that the agarolytic gene repertoire in marine bacteria has been diversified during evolution, while the essential core agarolytic gene set has been conserved. The expansion of the agarolytic gene repertoire and novel hydrolytic functions, including the elucidated molecular functionality of α-agarase, promote metabolic versatility by channeling agar metabolism through different routes. IMPORTANCE Colwellia echini A3T is an example of how the gain of gene(s) can lead to the evolutionary expansion of agar-specific polysaccharide utilization loci (PUL). C. echini A3T encodes two α-agarases in addition to the core β-agarolytic enzymes in its agarolytic PUL. Among the agar-degrading CAZymes identified so far, only a few α-agarases have been biochemically characterized. The molecular and biological functions of two α-agarases revealed that their unique hydrolytic pattern leads to the emergence of auxiliary agarolytic pathways. Through the combination of transcriptomic, genomic, and biochemical evidence, we elucidate the complete α-agarolytic pathway in C. echini A3T. The addition of α-agarases to the agarolytic enzyme repertoire might allow marine agarolytic bacteria to increase competitive abilities through metabolic versatility.
Collapse
|
8
|
Song T, Wang X, Wu M, Zhao K, Wang X, Chu Y, Lin J. Agarase cocktail from agar polysaccharide utilization loci converts homogenized Gelidium amansii into neoagarooligosaccharides. Food Chem 2020; 352:128685. [PMID: 33691998 DOI: 10.1016/j.foodchem.2020.128685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
Neoagarooligosaccharides (NAOs) are drawing more and more attention because of their numerous bioactivities, yet limited number of agarases impedes NAOs production from red algae. In this study, predicted agar polysaccharide utilization loci (agar-PUL) were firstly used as inventory for agarase. 6 agarases were identified from agar-PULs and two of them were successfully expressed and analyzed. Then enzyme cocktail (GH16-1:GH16-2:Aga50D = 2:1:1) was proved to have highest synergistic effect. Finally homogenization was applied to G. amansii and proved to be an efficient way to release agar from tissues. When liquid-to-solid ratio was 9 g/150 mL, homogenization time was 20 min, and enzyme cocktail loading was 150 U/150 mL, maximum NAOs production (90.2 mg per 9 g wet G. amansii) could be achieved. Enzyme supported one-step process (ESOP) proposed in study is environment-friendly, time saving, cost saving and none-destructive, therefore has a potential industrial application in red algae utilization.
Collapse
Affiliation(s)
- Tao Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, PR China
| | - Xiaotao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, PR China
| | - Minghao Wu
- School of Pharmacy, Chengdu Medical College, 610500 Chengdu, PR China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, PR China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, PR China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, PR China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|