1
|
Yang J, Liu Y, He L, Yu W, Liu H, Chen T. X-ray-Sensitive Selenium Nanoparticles Enhance Esophageal Squamous Cell Carcinoma Radiotherapy through Activating P53/IGFBP3 Pathway by Regulating GPX2. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24865-24876. [PMID: 40241246 DOI: 10.1021/acsami.4c22183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Radiotherapy remains a crucial treatment for esophageal squamous cell carcinoma (ESCC), although the development of radiation resistance and the occurrence of radiation-induced side effects pose significant clinical challenges. Selenium (Se) has obvious antitumor effects, but the sensitizing effect and mechanism of Se nanoparticles in ESCC radiotherapy remain to be determined. The aim of this study was to investigate which form of Se have superior sensitization of ESCC and to investigate how Se nanoparticles (LNT-SeNPs) can enhance the radiosensitivity of ESCC. Our findings indicate that LNT-SeNPs exhibit remarkable radiosensitizing activity with a higher safety index. These nanoparticles effectively inhibit cell growth, induce S-phase arrest, and promote apoptosis through increased reactive oxygen species (ROS) production. Furthermore, analysis via the GEO database revealed the correlation between the selenoprotein GPX2 and the radiosensitivity of esophageal cancer. Further investigations demonstrate that LNT-SeNPs suppress GPX2 expression, leading to apoptosis in ESCC cells via the p53/IGFBP3 signaling pathway. In conclusion, this study elucidates that LNT-SeNPs can enhance the effectiveness of radiotherapy for esophageal cancer, providing valuable insights into the potential use of Se-based drugs as adjunctive therapy. These findings pave the way for future clinical applications aimed at improving therapeutic outcomes in patients undergoing radiotherapy for ESCC.
Collapse
Affiliation(s)
- Jianwei Yang
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Ying Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Neurology, The First Affiliated Hospital of Jinan University, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lizhen He
- Department of Neurology, The First Affiliated Hospital of Jinan University, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Wenfang Yu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Neurology, The First Affiliated Hospital of Jinan University, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Tianfeng Chen
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Neurology, The First Affiliated Hospital of Jinan University, Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Gandhi VV, Pal MK, Singh BG, Das RP, Wadawale AP, Dey S, Kunwar A. Deuterium labeling improves the therapeutic index of 3,3'-diselenodipropionic acid as an anticancer agent: insights from redox reactions. RSC Med Chem 2024; 15:2165-2178. [PMID: 38911162 PMCID: PMC11187547 DOI: 10.1039/d4md00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
3,3'-Diselenodipropionic acid (DSePA), a selenocystine derivative, has been previously reported as an oral supplement for anticancer/radio-modulation activities. The present study is focused on devising a strategy to synthesize and characterize the deuterated derivative of DSePA and on understanding the effect of deuteration on its therapeutic index by comparing its cytotoxicity in cancerous versus non-cancerous cell types. In this context, the synthesis of 3,3'-diselenodipropionic acid-D8 (D-DSePA) was accomplished in ∼42% yield. Further, the results clearly established that the deuteration of DSePA significantly reduced its cytotoxicity in non-cancerous cell types while retaining its cytotoxicity in cancerous cell lines. Together, D-DSePA displayed a ∼5-fold higher therapeutic index than the non-deuterated derivative for anticancer activity. The biochemical and NMR studies confirmed that the better biocompatibility of D-DSePA than its non-deuterated derivative in non-cancerous cells was due to its ability to undergo slower redox reactions and to cause lesser inhibition of intracellular redox enzymes.
Collapse
Affiliation(s)
- V V Gandhi
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - M K Pal
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
| | - B G Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - R P Das
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
| | - S Dey
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - A Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| |
Collapse
|
3
|
Gandhi VV, Gandhi KA, Goda JS, Kumbhare LB, Gota V, Kunwar A. Post-radiation treatment of 3,3'-diselenodipropionic acid augments cell kill by modulating DNA repair and cell migration pathways in A549 cells. IUBMB Life 2023; 75:811-829. [PMID: 37072689 DOI: 10.1002/iub.2727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/14/2023] [Indexed: 04/20/2023]
Abstract
Aim of the present study was to test whether ionizing radiation (IR) treatment along with 3,3'-diselenodipropionic acid (DSePA), a redox active organodiselenide achieved better tumor control by suppressing the growth and migration of lung cancer cells. The results indicated that post-IR (2 Gy) treatment of DSePA (5 μM) led to a significantly higher cell death as compared to that of DSePA and IR treatments separately. Importantly, combinatorial treatment also showed reduction in the proportion of cancer stem cells and the clonogenic survival of A549 cells. The mechanistic studies indicated that combinatorial treatment although exhibited reductive environment (marked by decrease in ROS and increase of GSH/GSSG) at early time points (2-6 h postradiation), slowed DNA repair, inhibited epithelial-mesenchymal transition (EMT)/cell migration and induced significant level of apoptosis. DSePA mediated suppression of ATM/DNAPKs/p53 (DNA damage response signaling) and Akt/G-CSF (EMT) pathways appeared to be the major mechanism responsible for its radio-modulating activity. Finally, the combined treatment of IR (2 Gy × 4) and DSePA (0.1-0.25 mg/kg body weight daily through oral gavage) showed a significantly higher tumor suppression of the A549 xenograft as compared to that of DSePA and IR treatments separately in the mouse model. In conclusion, post-IR treatment of DSePA augmented cell kill by inhibiting DNA repair and cell migration in A549 cells.
Collapse
Affiliation(s)
- Vishwa Vipulkumar Gandhi
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Khushboo Atulkumar Gandhi
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Jayant Sastri Goda
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | | | - Vikram Gota
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Amit Kunwar
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Wang M, Shen Y, Hu X, Zhu Y, Wang J. Colorimetric/SERS dual-channel nanoprobe for reactive oxygen species monitoring in elucidating the mechanism of chemotherapeutic drugs action on cancer cells. Mikrochim Acta 2022; 189:351. [PMID: 36008738 DOI: 10.1007/s00604-022-05451-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022]
Abstract
Reactive oxygen species (ROS) are involved in drug-induced cytotoxicity by regulating cell signaling, inducing oxidative stress, and damaging the DNA and proteins. Examining ROS production in cells under the stimulation of chemotherapeutic drugs is of great importance for understanding the ROS roles and identifying the mechanism of drug-induced cytotoxicity. Here, a silver/gold (Ag/Au) nanoshell-based colorimetric and surface-enhanced Raman spectroscopy (SERS) dual-response nanoprobe was proposed for ROS sensing on the basis of Ag etching. In this study, as a kind of ROS, hydrogen peroxide (H2O2) was detected by the prepared nanoprobe. The linear ranges of 0.5-100 μM with a limit of detection (LOD) of 0.343 μM for the colorimetric determination and 1-50 μM with LOD of 0.294 μM for SERS determination were achieved. The detection of cellular ROS concentration after stimulation by cisplatin, paclitaxel, doxorubicin, and 5-fluorouracil was validated by the nanoprobe. The nanoprobe could also be used to detect the signal pathway of ROS production by cisplatin stimulation. This study provided a simple and novel dual-response nanoplatform for detecting and monitoring ROS in cells, which holds great potential for elucidating the mechanism of occurrence and treatment of ROS-involved diseases.
Collapse
Affiliation(s)
- Mi Wang
- Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, 050051, People's Republic of China
| | - Yanting Shen
- Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Xiaoxiao Hu
- Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yanyan Zhu
- Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jing Wang
- Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
5
|
Yang Q, Xie C, Luo K, Tan L, Peng L, Zhou L. Rational construction of a new water soluble turn-on colorimetric and NIR fluorescent sensor for high selective Sec detection in Se-enriched foods and biosystems. Food Chem 2022; 394:133474. [PMID: 35716503 DOI: 10.1016/j.foodchem.2022.133474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
As a naturally occurring amino acid, selenocysteine (Sec) plays a key role in a variety of cellular functions and Se-enriched foods. In this work, a robust water soluble fluorescence turn-on near-infrared (NIR) sensor NIR-Sec was constructed for Sec detection over biothiols in Se-enriched foods. Specifically, NIR-Sec contains a readily prepared water soluble NIR dicyanoisophorone fluorophore and a well-known response-site 2,4-dinitrobenzenesulfonyl moiety with strong intramolecular charge transfer (ICT) effect to quench the fluorescence intensity of NIR fluorophore. Upon addition of Sec, the NIR dicyanoisophorone fluorophore was released and a bright red emission at 663 nm was observed. Moreover, NIR-Sec toward Sec exhibited rapid response time (∼1 min), a large stoke shift (183 nm), and high selectivity and sensitivity (LOD: 52 nM). Impressively, NIR-Sec was successfully employed to detect and image Sec in Se-enriched foods and shrimp, indicating NIR-Sec could provide a robust tool for investigating the role of Sec in complex real-food samples.
Collapse
Affiliation(s)
- Qiaomei Yang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Longpeng Peng
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
6
|
Liu C, Zhou S, Bai W, Shi L, Li X. Protective effect of food derived nutrients on cisplatin nephrotoxicity and its mechanism. Food Funct 2022; 13:4839-4860. [PMID: 35416186 DOI: 10.1039/d1fo04391a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platinum-based metal complexes, especially cisplatin (cis-diamminedichloroplatinum II, CDDP), possess strong anticancer properties and a broad anticancer spectrum. However, the clinical application of CDDP has been limited by its side effects including nephrotoxicity, ototoxicity, and neurotoxicity. Furthermore, the therapeutic effects of current clinical protocols are imperfect. Accordingly, it is essential to identify key targets and effective clinical protocols to restrict CDDP-induced nephrotoxicity. Herein, we first analyzed the relevant molecular mechanisms during the process of CDDP-induced nephrotoxicity including oxidative stress, apoptosis, and inflammation. Evidence from current studies was collected and potential targets and clinical protocols are summarized. The evidence indicates an efficacious role of nutrition-based substances in CDDP-induced renal injury.
Collapse
Affiliation(s)
- Chaofan Liu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Sajin Zhou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Weibin Bai
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
7
|
Deshmukh Y, Gandhi VV, Singh BG, Kumbhare LB, Debnath AK, Kunwar A. 3,3'-Diselenodipropionic acid (DSePA) forms 1:1 complex with Hg (II) and prevents oxidative stress in cultured cells and mice model. J Inorg Biochem 2021; 226:111638. [PMID: 34717254 DOI: 10.1016/j.jinorgbio.2021.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Mercury is one of the most toxic heavy metal for mammals particularly in inorganic form. In present study, 3,3'-diselenodipropionic acid (DSePA), a well-known pharmacological diselenide was evaluated for its interaction with HgCl2 and ability to prevent HgCl2-induced toxicity in experimental cellular and mice models. UV-visible, stopped flow, Fourier-transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy studies confirmed that DSePA sequestered Hg (II) ions with stoichiometry of 1:1 and binding constant of ~104 M-1. X-ray photoelectron spectroscopy and X-ray powder diffraction analysis suggested that diselenide group of DSePA was involved in the complexation with Hg (II) ions. Further, Hg-DSePA complex degraded within 10 days to form excretable HgSe. The binding constant of DSePA and Hg (II) was comparable with that of dihydrolipoic acid, a standard disulfide compound used in heavy metal detoxification. Corroborating these observations, pre-treatment of DSePA (10 μM) significantly prevented the HgCl2 (50 μM)-induced glutathione oxidation (GSH/GSSG), decrease of thioredoxin reductase (TrxR) and glutathione peroxidase (GPx) activities and cell death in Chinese Hamster Ovary (CHO) cells. Similarly, intraperitoneal administration of DSePA at a dosage of 2 mg/kg for 5 consecutive days prior to exposure of HgCl2 (1 mg/kg) significantly suppressed oxidative stress in renal and hepatic tissues of C57BL/6 mice. In conclusion, the protective effect of DSePA against Hg induced oxidative stress is attributed to its ability to rescue the activities of GPx, TrxR and GSH by sequestering Hg (II) ions. DSePA being a relatively safer selenium-compound for in vivo administration can be explored for mercury detoxification.
Collapse
Affiliation(s)
- Y Deshmukh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur 492010, India
| | - V V Gandhi
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - B G Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - L B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - A K Debnath
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India; Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - A Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
8
|
Selenium and Coenzyme Q10 Supplementation Improves Renal Function in Elderly Deficient in Selenium: Observational Results and Results from a Subgroup Analysis of a Prospective Randomised Double-Blind Placebo-Controlled Trial. Nutrients 2020; 12:nu12123780. [PMID: 33317156 PMCID: PMC7764721 DOI: 10.3390/nu12123780] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022] Open
Abstract
A low selenium intake is found in European countries, and is associated with increased cardiovascular mortality. There is an association between selenium level and the severity of kidney disease. An association between inflammation and selenium intake is also reported. The coenzyme Q10 level is decreased in kidney disease. The aim of this study was to examine a possible association between selenium and renal function in an elderly population low in selenium and coenzyme Q10, and the impact of intervention with selenium and coenzyme Q10 on the renal function. The association between selenium status and creatinine was studied in 589 elderly persons. In 215 of these (mean age 71 years) a randomised double-blind placebo-controlled prospective trial with selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/day) (n = 117) or placebo (n = 98) was conducted. Renal function was determined using measures of glomerular function at the start and after 48 months. The follow-up time was 5.1 years. All individuals were low on selenium (mean 67 μg/L (SD 16.8)). The changes in renal function were evaluated by measurement of creatinine, cystatin-C, and the use of the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) algorithm, and by the use of T-tests, repeated measures of variance and ANCOVA analyses. An association between low selenium status and impaired renal function was observed. Intervention causes a significantly lower serum creatinine, and cystatin-C concentration in the active treatment group compared with those on placebo (p = 0.0002 and p = 0.001 resp.). The evaluation with CKD-EPI based on both creatinine and cystatin-C showed a corresponding significant difference (p < 0.0001). All validations showed corresponding significant differences. In individuals with a deficiency of selenium and coenzyme Q10, low selenium status is related to impaired renal function, and thus supplementation with selenium and coenzyme Q10 results in significantly improved renal function as seen from creatinine and cystatin-C and through the CKD-EPI algorithm. The explanation could be related to positive effects on inflammation and oxidative stress as a result of the supplementation.
Collapse
|
9
|
Wilk A, Szypulska-Koziarska D, Marchelek-Myśliwiec M, Głazek W, Wiszniewska B. Serum Selenium, Iron, Zinc, and Copper Concentrations in Renal Transplant Recipients Treated with Mycophenolate Mofetil. Biol Trace Elem Res 2020; 198:371-379. [PMID: 32072447 PMCID: PMC7561557 DOI: 10.1007/s12011-020-02074-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Abstract
There are data available in the literature on bioelement concentrations in the serum of various groups of patients; however, very little is known about the serum concentration of selenium (Se), iron (Fe), zinc (Zn), and copper (Cu) in renal transplant patients treated with immunosuppressive drugs, including mycophenolate mofetil (MMF). Monitoring of serum bioelement concentrations in renal transplant recipients is of profound importance, as the proper bioelement levels seem to prolong the normal function of the transplanted organ. Thus, the aim of this current study was to examine and carry out comparative analysis involving serum concentrations of Se, Fe, Cu, and Zn of renal transplant recipients treated with MMF and without MMF. The material consisted of blood samples from 115 patients of the Department of Nephrology, Transplantology, and Internal Medicine of Independent Public Clinical Hospital No. 2, Pomeranian Medical University, in the city of Szczecin in the northwestern Poland. Serum Se, Fe, Cu, and Zn levels were quantified by inductively coupled mass spectroscopy (ICP-MS). Taking into account all patients, MMF increases Cu level. Cu and Fe concentrations were significantly higher in women treated with MMF; in group of younger patients treated with MMF, Se level was significantly lower comparing with those whose regimen did not include MMF. Additionally, MMF in combination with prednisone increased Se concentration in blood of transplant recipients. Our study highlights that trace elements should be monitored to allow for an early detection of trace elements deficits, which can easily be corrected for by an adjusted diet or supplemental intake.
Collapse
Affiliation(s)
- Aleksandra Wilk
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111, Szczecin, Poland.
| | - Dagmara Szypulska-Koziarska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111, Szczecin, Poland
| | - Małgorzata Marchelek-Myśliwiec
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Powst. Wlkp. 72, 70-111, Szczecin, Poland
| | - Wojciech Głazek
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111, Szczecin, Poland
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111, Szczecin, Poland
| |
Collapse
|
10
|
Kunwar A, Priyadarsini KI, Jain VK. 3,3'-Diselenodipropionic acid (DSePA): A redox active multifunctional molecule of biological relevance. Biochim Biophys Acta Gen Subj 2020; 1865:129768. [PMID: 33148501 DOI: 10.1016/j.bbagen.2020.129768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Extensive research is being carried out globally to design and develop new selenium compounds for various biological applications such as antioxidants, radio-protectors, anti-carcinogenic agents, biocides, etc. In this pursuit, 3,3'-diselenodipropionic acid (DSePA), a synthetic organoselenium compound, has received considerable attention for its biological activities. SCOPE OF REVIEW This review intends to give a comprehensive account of research on DSePA so as to facilitate further research activities on this organoselenium compound and to realize its full potential in different areas of biological and pharmacological sciences. MAJOR CONCLUSIONS It is an interesting diselenide structurally related to selenocystine. It shows moderate glutathione peroxidase (GPx)-like activity and is an excellent scavenger of reactive oxygen species (ROS). Exposure to radiation, as envisaged during radiation therapy, has been associated with normal tissue side effects and also with the decrease in selenium levels in the body. In vitro and in vivo evaluation of DSePA has confirmed its ability to reduce radiation induced side effects into normal tissues. Administration of DSePA through intraperitoneal (IP) or oral route to mice in a dose range of 2 to 2.5 mg/kg body weight has shown survival advantage against whole body irradiation and a significant protection to lung tissue against thoracic irradiation. Pharmacokinetic profiling of DSePA suggests its maximum absorption in the lung. GENERAL SIGNIFICANCE Research work on DSePA reported in fifteen years or so indicates that it is a promising multifunctional organoselenium compound exhibiting many important activities of biological relevance apart from radioprotection.
Collapse
Affiliation(s)
- A Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - K Indira Priyadarsini
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098, India.
| | - Vimal K Jain
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098, India.
| |
Collapse
|
11
|
Inamura A, Muraoka-Hirayama S, Sakurai K. Loss of Mitochondrial DNA by Gemcitabine Triggers Mitophagy and Cell Death. Biol Pharm Bull 2020; 42:1977-1987. [PMID: 31787713 DOI: 10.1248/bpb.b19-00312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gemcitabine (2,2-difluorodeoxycytidine nucleic acid), an anticancer drug exhibiting a potent ability to kill cancer cells, is a frontline chemotherapy drug. Although some chemotherapeutic medicines are known to induce nuclear DNA damage, no investigation into mitochondrial DNA (mtDNA) damage currently exists. When we treated insulinoma pancreatic β-cells (line INS-1) with high mitochondrial activity with gemcitabine for 24 h, the mtDNA contents were decreased. Gemcitabine induced a decrease in the number of mitochondria and the average potential of mitochondrial membrane in the cell but increased the superoxide anion radical levels. We observed that treatment with gemcitabine to induce cell death accompanied by autophagy-related protein markers, Atg5 and Atg7; these were significantly prevented by the autophagy inhibitors. The localization of Atg5 co-occurred with the location of mitochondria with membranes having high potential and mitophagy in cells treated with gemcitabine. The occurrence of mitophagy was inhibited by the inhibitors of the phosphatidylinositol 3-kinase/Akt pathway. Our results led us to the conclusion that gemcitabine induced cell death through mitophagy with the loss of mtDNA. These findings may provide a rationale for the combination of mtDNA damage with mitophagy in future clinical applications for cancer cells.
Collapse
Affiliation(s)
- Akihiro Inamura
- Division of Life Science, Department of Pharmacy, Hokkaido University of Science
| | | | - Koichi Sakurai
- Division of Life Science, Department of Pharmacy, Hokkaido University of Science
| |
Collapse
|
12
|
Li M, Lv J, Wang S, Wang J, Lin Y. Expanded mesoporous silica-encapsulated ultrasmall Pt nanoclusters as artificial enzymes for tracking hydrogen peroxide secretion from live cells. Anal Chim Acta 2020; 1104:180-187. [PMID: 32106950 DOI: 10.1016/j.aca.2020.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023]
Abstract
Design of synthetic structures that possess the similar functions to natural enzymes held great promise in environmental detection and biomedical application. Herein, a new concept for the fabrication of solid-supported catalysts as peroxidase mimic have been proposed to realize high-catalytic activity and stability by utilizing expanded mesoporous silica (EMSN)-encapsulated Pt nanoclusters. Compared with PtNCs, the introduction of amino group modified EMSN would enrich H2O2 on the surface of PtNCs and increase the catalytic sites for H2O2 decomposition, which gave rise to the higher catalytic activity of EMSN-PtNCs over a broad pH range, especially in weakly acidic and neural solutions. This would facilitate their applications for real-time monitoring the secretion of H2O2 from living cancer cells stimulated by various anticancer drugs. Our findings not only pave the way to use porous matrix as the structural component for the design of the biomimetic catalysts, but also provide a simple and reliable platform to monitor H2O2 released from living cells in real time, which holds great potential for elucidating the biological roles of H2O2 and underlying molecular mechanisms of drug cytotoxicity as well as drug therapeutic effects.
Collapse
Affiliation(s)
- Meng Li
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Lv
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuangling Wang
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Wang
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yulong Lin
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
13
|
Shi HH, Wang CC, Guo Y, Xue CH, Zhang TT, Wang YM. DHA-PC protects kidneys against cisplatin-induced toxicity and its underlying mechanisms in mice. Food Funct 2019; 10:1571-1581. [DOI: 10.1039/c8fo02386g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DHA-PC protected the kidney against cisplatin-induced toxicity through sirtuin 1 activation, the inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hao-Hao Shi
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Ying Guo
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Chang-Hu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| | - Tian-Tian Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Yu-Ming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|