1
|
Dubovik V, Dalinova A, Berestetskiy A. Natural ten-membered lactones: sources, structural diversity, biological activity, and intriguing future. Nat Prod Rep 2024; 41:85-112. [PMID: 37885339 DOI: 10.1039/d3np00013c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Covering: 2012 to 2022Ten-membered lactones (TMLs) are an interesting and diverse group of natural polyketides that are abundant in fungi and, to a lesser extent, in bacteria, marine organisms, and insects. TMLs are known for their ability to exhibit a wide spectrum of biological activity, including phytotoxic, cytotoxic, antifungal, antibacterial, and others. However, the random discovery of these compounds by scientific groups with various interests worldwide has resulted in patchy information about their distribution among different organisms and their biological activity. Therefore, despite more than 60 years of research history, there is still no common understanding of the natural sources of TMLs, their structural type classification, and most characteristic biological activities. The controversial nomenclature, incorrect or erroneous structure elucidation, poor identification of producing organisms, and scattered information on the biological activity of compounds - all these factors have led to the problems with dereplication and the directed search for TMLs. This review consists of two parts: the first part (Section 2) covers 104 natural TMLs, published between 2012 and 2022 (after the publishing of the previous review), and the second part (Section 3) summarizes information about 214 TMLs described during 1964-2022 and as a result highlights the main problems and trends in the study of these intriguing natural products.
Collapse
Affiliation(s)
- Vsevolod Dubovik
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| | - Anna Dalinova
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| | - Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| |
Collapse
|
2
|
Liu P, Tan Y, Yang J, Wang YD, Li Q, Sun BD, Xing XK, Sun DA, Yang SX, Ding G. Bioactive secondary metabolites from endophytic strains of Neocamarosporium betae collected from desert plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1142212. [PMID: 37008457 PMCID: PMC10063976 DOI: 10.3389/fpls.2023.1142212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Endophytic fungi from desert plants belong to a unique microbial community that has been scarcely investigated chemically and could be a new resource for bioactive natural products. In this study, 13 secondary metabolites (1-13) with diverse carbon skeletons, including a novel polyketide (1) with a unique 5,6-dihydro-4H,7H-2,6-methanopyrano[4,3-d][1,3]dioxocin-7-one ring system and three undescribed polyketides (2, 7, and 11), were obtained from the endophytic fungus Neocamarosporium betae isolated from two desert plant species. Different approaches, including HR-ESI-MS, UV spectroscopy, IR spectroscopy, NMR, and CD, were used to determine the planar and absolute configurations of the compounds. The possible biosynthetic pathways were proposed based on the structural characteristics of compounds 1-13. Compounds 1, 3, 4, and 9 exhibited strong cytotoxicity toward HepG2 cells compared with the positive control. Several metabolites (2, 4-5, 7-9, and 11-13) were phytotoxic to foxtail leaves. The results support the hypothesis that endophytic fungi from special environments, such as desert areas, produce novel bioactive secondary metabolites.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Chemical and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Yue Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan-Duo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing-Da Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ke Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di-An Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng-Xiang Yang
- College of Chemical and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Flores-Bocanegra L, Al Subeh ZY, Egan JM, El-Elimat T, Raja HA, Burdette JE, Pearce CJ, Linington RG, Oberlies NH. Dereplication of Fungal Metabolites by NMR-Based Compound Networking Using MADByTE. JOURNAL OF NATURAL PRODUCTS 2022; 85:614-624. [PMID: 35020372 PMCID: PMC8957573 DOI: 10.1021/acs.jnatprod.1c00841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 05/07/2023]
Abstract
Strategies for natural product dereplication are continually evolving, essentially in lock step with advances in MS and NMR techniques. MADByTE is a new platform designed to identify common structural features between samples in complex extract libraries using two-dimensional NMR spectra. This study evaluated the performance of MADByTE for compound dereplication by examining two classes of fungal metabolites, the resorcylic acid lactones (RALs) and spirobisnaphthalenes. First, a pure compound database was created using the HSQC and TOCSY data from 19 RALs and 10 spirobisnaphthalenes. Second, this database was used to assess the accuracy of compound class clustering through the generation of a spin system feature network. Seven fungal extracts were dereplicated using this approach, leading to the correct prediction of members of both families from the extract set. Finally, NMR-guided isolation led to the discovery of three new palmarumycins (20-22). Together these results demonstrate that MADByTE is effective for the detection of specific compound classes in complex mixtures and that this detection is possible for both known and new natural products.
Collapse
Affiliation(s)
- Laura Flores-Bocanegra
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Zeinab Y. Al Subeh
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Joseph M. Egan
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Tamam El-Elimat
- Department
of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Joanna E. Burdette
- Department
of Pharmaceutical Sciences, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., Hillsborough, North Carolina 27278, United States
| | - Roger G. Linington
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| |
Collapse
|
4
|
Xu ZL, Yan DJ, Tan XM, Niu SB, Yu M, Sun BD, Ding CF, Zhang YG, Ding G. Phaeosphspirone (1/1'), a pair of unique polyketide enantiomers with an unusual 6/5/5/6 tetracyclic ring from the desert plant endophytic fungus Phaeosphaeriaceae sp. PHYTOCHEMISTRY 2022; 194:112969. [PMID: 34861538 DOI: 10.1016/j.phytochem.2021.112969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Phaeosphspirone, an undescribed polyketide with a unique 6/5/5/6-fused tetracyclic system, and two known analogues, herbarin and O-methylherbarin, were purified from the endophytic fungus Phaeosphaeriaceae sp. isolated from the desert plant Bassia dasyphylla. The connectivity and relative configuration of phaeosphspirone was elucidated by comprehensive HR-ESI-MS and NMR analysis together with a computer-assisted structure elucidation (CASE) method. A pair of enantiomers existing in phaeosphspirone were separated by HPLC chromatography after reacting with chiral reagents, from which the absolute configuration of phaeosphspirone was simultaneously determined based on Mosher's rule. This tandem strategy provides a useful approach for the separation and stereochemical determination of enantiomers possessing secondary hydroxyl groups. The structural feature of phaeosphspirone, herbarin and O-methylherbarin together with gene cluster analysis suggested their polyketide biosynthetic origin. Herbarin and O-methylherbarin exhibited moderate cytotoxicity against three cancer cell lines.
Collapse
Affiliation(s)
- Zhen-Lu Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, Jinan, 250103, People's Republic of China; College of Life Sciences, Shandong Normal University, Shandong, Jinan, 250014, People's Republic of China
| | - Dao-Jiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Xiang-Mei Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Shu-Bin Niu
- School of Biological Medicine, Beijing City University, Beijing, 450046, People's Republic of China
| | - Meng Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Bing-Da Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Cai-Feng Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Yong-Gang Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, Jinan, 250103, People's Republic of China; College of Life Sciences, Shandong Normal University, Shandong, Jinan, 250014, People's Republic of China.
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
5
|
Shuai C, Li L, Yanhui H, Jin W, Zilong L, Xiaoxue S, Yuchong Z, Jinying C. Study on the degradation of deoxynivalenol in corn and wheat both in the lab and barn by low concentration ozone. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Shuai
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Li Li
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Hao Yanhui
- Sinograin Weinan Depot Co. Ltd. Weinan China
| | - Wang Jin
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Liao Zilong
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Shan Xiaoxue
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Zhang Yuchong
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Chen Jinying
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| |
Collapse
|
6
|
Zhang XY, Tan XM, Yu M, Yang J, Sun BD, Qin JC, Guo LP, Ding G. Bioactive metabolites from the desert plant-associated endophytic fungus Chaetomium globosum (Chaetomiaceae). PHYTOCHEMISTRY 2021; 185:112701. [PMID: 33607578 DOI: 10.1016/j.phytochem.2021.112701] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Globosumin, an undescribed chromene-4,7(4aH)-dione-tetramic acid PKS-PKS-NRPS hybrid, and globosumone, an undescribed azaphilone, together with ten known metabolites, were isolated from the desert plant-associated endophytic fungus Chaetomium globosum (Chaetomiaceae). The planar structures and relative configurations of globosumin and globosumone were determined by high-resolution ESI-MS and NMR data, and the absolute configurations of these two metabolites were determined by electronic circular dichroism (ECD) and circular dichroism (CD) combined with time-dependent density functional theory (TDDFT)-based quantum-chemical calculations. Chaetoglobosin A displayed biological effects against the seedling growth of Arabidopsis thaliana (Brassicaceae) in a dose-dependent manner, and this compound also exhibited biological activity against two cancer cell lines, A549 and HepG2, with IC50 values of 6.82 ± 2.34 and 38.62 ± 7.44 μM, respectively.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Xiang-Mei Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Meng Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Bing-Da Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100090, People's Republic of China
| | - Jian-Chun Qin
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| | - Lan-Ping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
7
|
Li YY, Tan XM, Wang YD, Yang J, Zhang YG, Sun BD, Gong T, Guo LP, Ding G. Bioactive seco-Sativene Sesquiterpenoids from an Artemisia desertorum Endophytic Fungus, Cochliobolus sativus. JOURNAL OF NATURAL PRODUCTS 2020; 83:1488-1494. [PMID: 32302133 DOI: 10.1021/acs.jnatprod.9b01148] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of seco-sativene sesquiterpenoids (1-11) including two new natural products (2 and 3), four new analogues (4-7), and six known analogues, helminthosporic acid (1), drechslerine A (8), drechslerine B (9), helminthosporol (10), helminthosporal acid (11), and isosativenediol (12), were purified from the endophytic fungus Cochliobolus sativus isolated from a desert plant, Artemisia desertorum. The stereochemistry of helminthosporic acid (1) was established for the first time by X-ray diffraction, and the structures including relative and absolute configurations of these new compounds were determined by NMR and CD spectra together with biosynthetic considerations. Compounds 5-7 are the first seco-sativene sesquiterpenoids possessing a glucose group on C-15, C-15, and C-14, respectively. Compounds 1, 7, 9, and 11 displayed strong phytotoxic effects on corn leaves by producing visible lesions, and helminthosporic acid (1) was shown to promote division of leaves and roots of Arabidopsis thaliana with a dose-dependent relationship.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Xiang-Mei Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Yan-Duo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Yong-Gang Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, Jinan 250103, People's Republic of China
| | - Bing-Da Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100090, People's Republic of China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Lan-Ping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
- State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, People's Republic of China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| |
Collapse
|
8
|
Stereochemical determination of four 10-membered ring resorcylic acid lactones from the desert plant endophytic fungus Chaetosphaeronema hispidulum. J Antibiot (Tokyo) 2020; 73:471-474. [PMID: 32157185 DOI: 10.1038/s41429-020-0297-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 11/08/2022]
Abstract
Four 10-membered ring resorcylic acid lactones (RALs) including a new compound hispidulactone F (1) and three known analogs hispidulactone B (2), 2 R, 4R-sonnerlactone (3), and 2 R, 4S-sonnerlactone (4) were isolated from the special bioenvironmental desert plant endophytic fungus Chaetosphaeronema hispidulum. The structure of the new compound hispidulactone F (1) was determined by extensive spectra analysis including HR-ESI-MS, NMR (1H, 13C, 1H-1H COSY, HSQC, and HMBC). Hispidulactone F (1) and hispidulactone B (2) were a pair of stereoisomers at C-3, whereas 2 R, 4R-sonnerlactone (3) and 2 R, 4S-sonnerlactone (4) were another pair of stereoisomers at C-4. The stereochemistries of the hydroxyl groups at C-3 in 1 and 2, and at C-4 in 3 and 4 were first determined by modified Mosher's reactions. Thus, the absolute configuration C-3 in hispidulactone B (2) was not right in our previous report, and was rectified to be R. Compounds 1 and 4 were evaluated for their cytotoxic effects on the proliferation of HepG2. The possible biosynthetic pathway of compounds 1-4 was also presented.
Collapse
|
9
|
Mallampudi NA, Choudhury UM, Mohapatra DK. Total Synthesis of (−)-Citreoisocoumarin, (−)-Citreoisocoumarinol, (−)-12-epi-Citreoisocoumarinol, and (−)-Mucorisocoumarins A and B Using a Gold(I)-Catalyzed Cyclization Strategy. J Org Chem 2020; 85:4122-4129. [DOI: 10.1021/acs.joc.9b03278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- N. Arjunreddy Mallampudi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Utkal Mani Choudhury
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Debendra K. Mohapatra
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| |
Collapse
|
10
|
Wang ZF, Sun ZC, Xiao L, Zhou YM, Du FY. Herbicidal Polyketides and Diketopiperazine Derivatives from Penicillium viridicatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14102-14109. [PMID: 31790231 DOI: 10.1021/acs.jafc.9b06116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herbicidal activity-guided isolation from the fermentation extract of Penicillium viridicatum had obtained two herbicidal series of polyketides (1-7) and diketopiperazine derivatives (8-11), especially including three novel polyketides (1-3). The structures and absolute configurations of new polyketides 1-3 were elucidated by extensive spectroscopic analyses, as well as comparisons between measured and calculated ECD spectra. Novel polyketides 1-3 and known 4, all bearing the heptaketide skeleton with a trans-fused decalin ring of 8-CH3 substitution, could significantly inhibit the radicle growth of Echinochloa crusgalli seedlings with a dose-dependent relationship. Especially at the concentration of 10 μg/mL, 1-4 exhibited the inhibition rates with 81.5% ± 2.0, 76.4% ± 0.8, 79.6% ± 1.1, and 80.0 ± 1.8%, respectively, even better than the commonly used synthetic herbicide of acetochlor with 76.1 ± 1.4%. Further greenhouse bioassay revealed that 4 showed pre-emergence herbicidal activity against E. crusgalli with the fresh-weight inhibition rate of 74.1% at a dosage of 400 g ai/ha, also better than acetochlor, while the other isolated metabolites (5-11) exhibited moderate herbicidal activities. The structure-activity differences of isolated polyketides indicated that the heptaketide skeleton, characterized by a trans-fused decalin ring with 8-CH3 substitution, should be the key factor of their herbicidal activities, which could give new insights for the bioherbicide developments.
Collapse
|
11
|
Zhang X, Tan X, Li Y, Wang Y, Yu M, Qing J, Sun B, Niu S, Ding G. Hispidulones A and B, two new phenalenone analogs from desert plant endophytic fungus Chaetosphaeronema hispidulum. J Antibiot (Tokyo) 2019; 73:56-59. [PMID: 31624336 DOI: 10.1038/s41429-019-0247-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/18/2023]
Abstract
Two new phenalenone analogs hispidulones A (1) and B (2) were isolated from the specially bioenvironmental desert plant endophytic fungus Chaetosphaeronema hispidulum. The structure of these two compounds were elucidated by extensive spectra analysis including HR-ESI-MS, NMR (1H, 13C, 1H-1H COSY, HSQC, and HMBC), CD, and electronic circular dichroism (ECD) combined with quantum-chemical calculations adopting time-dependent density functional theory (TDDFT) approaches. The W long-ranged 1H-1H COSY and HMBC correlations are very important in the structural elucidation of these two compounds. Hispidulone A (1) possesses a cyclohexa-2,5-dien-1-one moiety, whereas hispidulone B (2) contains a hemiacetal OCH3 group, which are very rare in the structures of phenalenone analogs. According to structural features of these two compounds together considering the literature, the possible biosynthetic pathway of 1 and 2 was postulated. Hispidulone B (2) displayed cytotoxic activities against three cancer cell lines A549, Huh7, and HeLa with IC50 values of 2.71 ± 0.08, 22.93 ± 1.61, and 23.94 ± 0.33 μM.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Xiangmei Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Yuanyuan Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Yanduo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Meng Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Jianchun Qing
- College of Plant Sciences, Jilin University, 130062, Changchun, China
| | - Bingda Sun
- Institute of Microbiology, Chinese Academy of Sciences, 100090, Beijing, China
| | - Shubin Niu
- School of Biological Medicine, Beijing City University, 100083, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China.
| |
Collapse
|
12
|
Guo QF, Yin ZH, Zhang JJ, Kang WY, Wang XW, Ding G, Chen L. Chaetomadrasins A and B, Two New Cytotoxic Cytochalasans from Desert Soil-Derived Fungus Chaetomium madrasense 375. Molecules 2019; 24:E3240. [PMID: 31492021 PMCID: PMC6767004 DOI: 10.3390/molecules24183240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Two new cytochalasans, Chaetomadrasins A (1) and B (2), along with six known analogues (3-8), were isolated from the solid-state fermented culture of desert soil-derived Chaetomium madrasense 375. Their structures were clarified by comprehensive spectroscopic analyses, and the absolute configurations of Compounds 1 and 2 were confirmed by electronic circular dichroism (ECD) and calculated ECD. For the first time, Chaetomadrasins A (1), which belongs to the chaetoglobosin family, is characterized by the presence of all oxygen atoms in the form of Carbonyl. Chaetomadrasin B (2) represents the first example of chaetoglobosin type cytochalasan characterized by a hydroxy unit and carbonyl group fused to the indole ring. Compounds 1 and 2 displayed moderate cytotoxicity against HepG2 human hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Qing-Feng Guo
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou, Henan 450063, China.
| | - Zhen-Hua Yin
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou, Henan 450063, China.
| | - Juan-Juan Zhang
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou, Henan 450063, China.
| | - Wen-Yi Kang
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou, Henan 450063, China.
| | - Xue-Wei Wang
- Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China.
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Union Medical College, Beijing 100193, China.
| | - Lin Chen
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou, Henan 450063, China.
| |
Collapse
|
13
|
Tan X, Zhang X, Yu M, Yu Y, Guo Z, Gong T, Niu S, Qin J, Zou Z, Ding G. Sesquiterpenoids and mycotoxin swainsonine from the locoweed endophytic fungus Alternaria oxytropis. PHYTOCHEMISTRY 2019; 164:154-161. [PMID: 31151062 DOI: 10.1016/j.phytochem.2019.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Oxytropiols A-J, ten undescribed guaiane-type sesquiterpenoids, and the mycotoxin swainsonine (SW) were isolated from the locoweed endophytic fungus Alternaria oxytropis. The chemical structures of these sesquiterpenoids were elucidated on the basis of HR-ESI-MS and NMR data including 1H, 13C, HSQC, 1H-1H COSY, HMBC, and NOESY spectra, and the absolute configurations of these compounds were determined using a modified Mosher's method and X-ray diffraction spectroscopy. A possible biosynthetic pathway of these guaiane-type sesquiterpenoids is discussed, and proposed that post-modification oxidative enzymes might form these highly polyhydroxylated structures. Compound 1 displayed biological effects on the root growth of Arabidopsis thaliana, and SW displayed cytotoxicity against A549 and HeLa cancer cell lines.
Collapse
Affiliation(s)
- Xiangmei Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Xiaoyan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Meng Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Yongtao Yu
- School of Agriculture, Ningxia University, Yinchuan, 750021, PR China
| | - Zhe Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Shubin Niu
- School of Biological Medicine, Beijing City University, Beijing, 450046, PR China
| | - Jianchun Qin
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Zhongmei Zou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
14
|
Li L, Zhang X, Tan X, Sun B, Wu B, Yu M, Zhang T, Zhang Y, Ding G. Rhinoclactones A-E, Resorcylic Acid Analogs from Desert Plant Endophytic Fungus Rhinocladiella similis. Molecules 2019; 24:molecules24071405. [PMID: 30974765 PMCID: PMC6480478 DOI: 10.3390/molecules24071405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Seven resorcylic acid lactones (RALs) including five new analog rhinoclactones, A–E (1, 2, 4–6), were isolated from an endophytic fungus Rhinocladiella similis in the plant Agriophyllum squarrosum collected from the Tengger Desert of the Ningxia Province, China. The structures of these new compounds were determined by HR-ESI-MS (High Resolution Electrospray Ionization Mass Spectrometry), NMR data, modified Mosher’s method, and X-ray diffraction experiments. All compounds isolated from this fungus possessed the 16-OMe/14-OH, not the common 16-OH/14-OH or 16-OH/14-OMe groups on the aromatic ring, which are rarely found in nature. Compound 7 displayed cytotoxic activities against HCT116 and HeLa cancer cell lines. The possible biosynthesis of 1–7 is suggested, and the potential ecological roles of these fungal secondary metabolites is discussed.
Collapse
Affiliation(s)
- Luying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Xiaoyan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Xiangmei Tan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Bingda Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yonggang Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
15
|
Song B, Li LY, Shang H, Liu Y, Yu M, Ding G, Zou ZM. Trematosphones A and B, Two Unique Dimeric Structures from the Desert Plant Endophytic Fungus Trematosphaeria terricola. Org Lett 2019; 21:2139-2142. [DOI: 10.1021/acs.orglett.9b00454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bo Song
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, People’s Republic of China
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, People’s Republic of China
| | - Ling-Yu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, People’s Republic of China
| | - Hai Shang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, People’s Republic of China
| | - Yang Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, People’s Republic of China
| | - Meng Yu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, People’s Republic of China
| | - Gang Ding
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, People’s Republic of China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, People’s Republic of China
| |
Collapse
|
16
|
Zhang P, Li X, Yuan XL, Du YM, Wang BG, Zhang ZF. Antifungal Prenylated Diphenyl Ethers from Arthrinium arundinis, an Endophytic Fungus Isolated from the Leaves of Tobacco ( Nicotiana tabacum L.). Molecules 2018; 23:E3179. [PMID: 30513840 PMCID: PMC6320909 DOI: 10.3390/molecules23123179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 01/12/2023] Open
Abstract
An endophytic fungus Arthrinium arundinis TE-3 was isolated and purified from the fresh leaves of cultivated tobacco (Nicotiana tabacum L.). Chemical investigation on this fungal strain afforded three new prenylated diphenyl ethers (1-3) as well as three known analogues (4-6). Structure elucidation of the isolated compounds was carried out by analysis of 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HRESIMS) spectra, as well as by comparison of those data with literature data. The absolute configuration of the stereogenic center at C-8 in 1 was assigned by comparison of the experimental and calculated ECD spectra. Compounds 1 and 2 showed selective antifungal activity against Mucor hiemalis with minimum inhibitory concentration (MIC) values of 8 and 4 μg/mL, respectively. Compounds 5 and 6 exhibited inhibitory activity against Alteraria alternata with an MIC value of 8 μg/mL. In the cytotoxic assay, 2, 5, and 6 displayed moderate in vitro cytotoxicity against the human monocytic cell line (THP-1 cell line), with IC50 values of 40.2, 28.3, and 25.9 μM, respectively. This study indicated that endophytic fungi possess great potential for exploring new bioactive secondary metabolites.
Collapse
Affiliation(s)
- Peng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xin Li
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xiao-Long Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yong-Mei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Bin-Gui Wang
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Zhong-Feng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|