1
|
Flavor release from traditional dry-cured pork during oral processing. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Shen D, Song H, Zou T, Raza A, Li P, Li K, Xiong J. Reduction of sodium chloride: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3931-3939. [PMID: 35266156 DOI: 10.1002/jsfa.11859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/08/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Sodium chloride (NaCl) is an enjoyable condiment. However, evidence is accumulating to indicate that an excessive intake of Na+ in food may lead to an increased risk of cardiovascular and cerebrovascular diseases. Previous systematic reviews have focused on replacing NaCl with other metal salts (e.g. KCl). However, new salty flavor enhancers (yeast extract, taste peptides, and odor compounds) have yet to be reviewed. This systematic review evaluates the methods for, and feasibility, of NaCl reduction. It defines NaCl reduction and considers the methods used for this purpose, especially the use of flavor enhancers (yeast extract, taste peptides, and odor compounds). © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongyu Shen
- Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing, China
| | - Huanlu Song
- Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing, China
| | - Tingting Zou
- Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing, China
| | - Ali Raza
- Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing, China
| | - Pei Li
- Angel Yeast Co. Ltd., Yichang, China
| | - Ku Li
- Angel Yeast Co. Ltd., Yichang, China
| | | |
Collapse
|
3
|
Kornbausch N, Debong MW, Buettner A, Heydel JM, Loos H. Odorant Metabolism in Humans. Angew Chem Int Ed Engl 2022; 61:e202202866. [PMID: 35522818 PMCID: PMC9541901 DOI: 10.1002/anie.202202866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/08/2022]
Abstract
Odorants are relatively small molecules which are easily taken up and distributed in the human body. Despite their relevance in everyday life, however, only a limited amount of evidence about their metabolism, pathways, and bioactivities in the human body exists. With this Review, we aim to encourage future interdisciplinary research on the function and mechanisms of the biotransformation of odorants, involving different disciplines such as nutrition, medicine, biochemistry, chemistry, and sensory sciences. Starting with a general overview of the different ways of odorant uptake and enzymes involved in the metabolism of odorants, a more precise description of biotransformation processes and their function in the oral cavity, the nose, the lower respiratory tract (LRT), and the gastrointestinal tract (GIT) is given together with an overview of the different routes of odorant excretion. Finally, perspectives for future research are discussed.
Collapse
Affiliation(s)
- Nicole Kornbausch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Marcel W Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation: Centre des Sciences du Gout et de l'Alimentation, Flavour perception: from molecule to behavior, FRANCE
| | - Helene Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, Henkestr. 9, 91054, Erlangen, GERMANY
| |
Collapse
|
4
|
Kornbausch N, Debong MW, Buettner A, Heydel JM, Loos H. Odorant Metabolism in Humans. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicole Kornbausch
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Marcel W. Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation: Centre des Sciences du Gout et de l'Alimentation Flavour perception: from molecule to behavior FRANCE
| | - Helene Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy Henkestr. 9 91054 Erlangen GERMANY
| |
Collapse
|
5
|
Criado C, Muñoz-González C, Hernández-Ledesma B, Pozo-Bayón MÁ. Temporal changes in salivary composition induced by oral exposure to different wine matrices and the relationship with the behaviour of aroma compounds in the mouth. Food Funct 2022; 13:4600-4611. [PMID: 35355023 DOI: 10.1039/d1fo03887g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The dynamic changes in saliva flow and composition (pH, total protein capacity (TPC), total polyphenol index (TPI) and saliva antioxidant activity (SAOX)) after the exposure of the oral cavity to aromatized wine matrices with different chemical compositions (dealcoholized, alcoholized, and synthetic wines) have been investigated. For this, stimulated saliva from ten volunteers were collected five days per week (from Monday to Friday) during three non-consecutive weeks, before (basal saliva) and after the oral intervention with the wines (5 and 15 minutes later) (n = 450). In order to know the relationship between the changes induced in salivary composition and the amount of aroma retained in the oral cavity, the expectorated wines were also collected (n = 150). Results showed differences in saliva composition (pH, TPI and SAOX) depending on the wine matrix that were only significant in the first five minutes after the oral exposure to the wines. The wines with ethanol produced significantly lower in-mouth aroma retention, while salivary TPI and, to a minor extent, SAOX, were positively related to the aroma retained. These results prove that not only wine aroma composition, but also the physiological changes in saliva induced by the non-volatile chemical composition of the wine play an important role in wine odorant compounds, and likely, in aroma perception.
Collapse
Affiliation(s)
- Celia Criado
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, C/Nicolás Cabrera, 9, 28049, Madrid, Spain.
| | - Carolina Muñoz-González
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, C/Nicolás Cabrera, 9, 28049, Madrid, Spain.
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, C/Nicolás Cabrera, 9, 28049, Madrid, Spain.
| | - María Ángeles Pozo-Bayón
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, C/Nicolás Cabrera, 9, 28049, Madrid, Spain.
| |
Collapse
|
6
|
Houghton JW, Carpenter G, Hans J, Pesaro M, Lynham S, Proctor G. Agonists of Orally Expressed TRP Channels Stimulate Salivary Secretion and Modify the Salivary Proteome. Mol Cell Proteomics 2020; 19:1664-1676. [PMID: 32651226 PMCID: PMC8014997 DOI: 10.1074/mcp.ra120.002174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 11/06/2022] Open
Abstract
Natural compounds that can stimulate salivary secretion are of interest in developing treatments for xerostomia, the perception of a dry mouth, that affects between 10 and 30% of the adult and elderly population. Chemesthetic transient receptor potential (TRP) channels are expressed in the surface of the oral mucosa. The TRPV1 agonists capsaicin and piperine have been shown to increase salivary flow when introduced into the oral cavity but the sialogogic properties of other TRP channel agonists have not been investigated. In this study we have determined the influence of different TRP channel agonists on the flow and protein composition of saliva. Mouth rinsing with the TRPV1 agonist nonivamide or menthol, a TRPM8 agonist, increased whole mouth saliva (WMS) flow and total protein secretion compared with unstimulated saliva, the vehicle control mouth rinse or cinnamaldehyde, a TRPA1 agonist. Nonivamide also increased the flow of labial minor gland saliva but parotid saliva flow rate was not increased. The influence of TRP channel agonists on the composition and function of the salivary proteome was investigated using a multi-batch quantitative MS method novel to salivary proteomics. Inter-personal and inter-mouth rinse variation was observed in the secreted proteomes and, using a novel bioinformatics method, inter-day variation was identified with some of the mouth rinses. Significant changes in specific salivary proteins were identified after all mouth rinses. In the case of nonivamide, these changes were attributed to functional shifts in the WMS secreted, primarily the over representation of salivary and nonsalivary cystatins which was confirmed by immunoassay. This study provides new evidence of the impact of TRP channel agonists on the salivary proteome and the stimulation of salivary secretion by a TRPM8 channel agonist, which suggests that TRP channel agonists are potential candidates for developing treatments for sufferers of xerostomia.
Collapse
Affiliation(s)
- Jack William Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.
| | - Guy Carpenter
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | | | | | - Steven Lynham
- Proteomics Facility, King's College London, London, UK
| | - Gordon Proctor
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
7
|
Gardner A, Carpenter G, So PW. Salivary Metabolomics: From Diagnostic Biomarker Discovery to Investigating Biological Function. Metabolites 2020; 10:E47. [PMID: 31991929 PMCID: PMC7073850 DOI: 10.3390/metabo10020047] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolomic profiling of biofluids, e.g., urine, plasma, has generated vast and ever-increasing amounts of knowledge over the last few decades. Paradoxically, metabolomic analysis of saliva, the most readily-available human biofluid, has lagged. This review explores the history of saliva-based metabolomics and summarizes current knowledge of salivary metabolomics. Current applications of salivary metabolomics have largely focused on diagnostic biomarker discovery and the diagnostic value of the current literature base is explored. There is also a small, albeit promising, literature base concerning the use of salivary metabolomics in monitoring athletic performance. Functional roles of salivary metabolites remain largely unexplored. Areas of emerging knowledge include the role of oral host-microbiome interactions in shaping the salivary metabolite profile and the potential roles of salivary metabolites in oral physiology, e.g., in taste perception. Discussion of future research directions describes the need to begin acquiring a greater knowledge of the function of salivary metabolites, a current research direction in the field of the gut metabolome. The role of saliva as an easily obtainable, information-rich fluid that could complement other gastrointestinal fluids in the exploration of the gut metabolome is emphasized.
Collapse
Affiliation(s)
- Alexander Gardner
- Salivary Research, Centre for Host–Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.G.); (G.C.)
- Department of Restorative Dentistry, Dental Hospital and School, University of Dundee, Dundee DD1 4HR, UK
| | - Guy Carpenter
- Salivary Research, Centre for Host–Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.G.); (G.C.)
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| |
Collapse
|