1
|
Yang B, Wang X, Li W, Liu G, Li D, Xie C, Yang R, Jiang D, Zhou Q, Wang P. Synergistic enhancement of anthocyanin stability and techno-functionality of colored wheat during the steamed bread processing by selectively hydrolyzed soy protein. Food Chem 2024; 456:139984. [PMID: 38876063 DOI: 10.1016/j.foodchem.2024.139984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
To improve the stability of anthocyanins and techno-functionality of purple and blue wheat, the selectively hydrolyzed soy protein (reduced glycinin, RG) and β-conglycinin (7S) were prepared and their enhanced effects were comparatively investigated. The anthocyanins in purple wheat showed higher stability compared to that of the blue wheat during breadmaking. The cyanidin-3-O-glucoside and cyanidin-3-O-rutincoside in purple wheat and delphinidin-3-O-rutinoside and delphinidin-3-O-glucoside in blue wheat were better preserved by RG. Addition of RG and 7S enhanced the quality of steamed bread made from colored and common wheat, with RG exhibited a more prominent effect. RG and 7S suppressed the gelatinization of starch and improved the thermal stability. Both RG and 7S promoted the unfolding process of gluten proteins and facilitated the subsequent crosslinking of glutenins and gliadins by disulfide bonds. Polymerization of α- and γ-gliadin into glutenin were more evidently promoted by RG, which contributed to the improved steamed bread quality.
Collapse
Affiliation(s)
- Bailu Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinnuo Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Guannan Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China.
| |
Collapse
|
2
|
De Bondt Y, Verdonck C, Brandt MJ, De Vuyst L, Gänzle MG, Gobbetti M, Zannini E, Courtin CM. Wheat Sourdough Breadmaking: A Scoping Review. Annu Rev Food Sci Technol 2024; 15:265-282. [PMID: 38271645 DOI: 10.1146/annurev-food-110923-034834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Using sourdough in breadmaking can enhance bread's shelf-life and flavor compared to exclusive baker's yeast use and is believed to increase its nutritional quality and healthiness. Previous research established insight into the microbial ecology of sourdough, but the link between leavening agent use, processing, and bread quality remains elusive. However, such knowledge is key for standardization, research on the health benefits, and the definition of sourdough bread. In this systematic scoping review, we analyzed 253 studies and identified large variations in the type and amount of leavening agent, fermentation conditions, and bread quality (specific loaf volume and acidification). The interrelation between these elements and their effect on the extent of fermentation is discussed, together with issues preventing proper comparison of breadmaking procedures. With this review, we want to contribute to the dialogue concerning the definition of sourdough-type bread products and the research into the health benefits attributed to them.
Collapse
Affiliation(s)
- Yamina De Bondt
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium;
| | - Celine Verdonck
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium;
| | | | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium;
| |
Collapse
|
3
|
Zhang Y, Wang D, Zhang Z, Guan H, Zhang Y, Xu D, Xu X, Li D. Improvement on wheat bread quality by in situ produced dextran-A comprehensive review from the viewpoint of starch and gluten. Compr Rev Food Sci Food Saf 2024; 23:e13353. [PMID: 38660747 DOI: 10.1111/1541-4337.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.
Collapse
Affiliation(s)
- Yao Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Research Program of Materials Science and Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhihong Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yanjie Zhang
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
D’Amico V, Gänzle M, Call L, Zwirzitz B, Grausgruber H, D’Amico S, Brouns F. Does sourdough bread provide clinically relevant health benefits? Front Nutr 2023; 10:1230043. [PMID: 37545587 PMCID: PMC10399781 DOI: 10.3389/fnut.2023.1230043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.
Collapse
Affiliation(s)
- Vera D’Amico
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lisa Call
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Benjamin Zwirzitz
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefano D’Amico
- Institute for Animal Nutrition and Feed, AGES–Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Gayathiri E, Prakash P, Pratheep T, Ramasubburayan R, Thirumalaivasan N, Gaur A, Govindasamy R, Rengasamy KRR. Bio surfactants from lactic acid bacteria: an in-depth analysis of therapeutic properties and food formulation. Crit Rev Food Sci Nutr 2023; 64:10925-10949. [PMID: 37401803 DOI: 10.1080/10408398.2023.2230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Healthy humans and animals commonly harbor lactic acid bacteria (LAB) on their mucosal surfaces, which are often associated with food fermentation. These microorganisms can produce amphiphilic compounds, known as microbial surface-active agents, that exhibit remarkable emulsifying activity. However, the exact functions of these microbial surfactants within the producer cells remain unclear. Consequently, there is a growing urgency to develop biosurfactant production from nonpathogenic microbes, particularly those derived from LAB. This approach aims to harness the benefits of biosurfactants while ensuring their safety and applicability. This review encompasses a comprehensive analysis of native and genetically modified LAB biosurfactants, shedding light on microbial interactions, cell signaling, pathogenicity, and biofilm development. It aims to provide valuable insights into the applications of these active substances in therapeutic use and food formulation as well as their potential biological and other benefits. By synthesizing the latest knowledge and advancements, this review contributes to the understanding and utilization of LAB biosurfactants in the food and nutritional areas.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, Tamil Nadu, India
| | | | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arti Gaur
- Department of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
The effects of cooperative fermentation by yeast and lactic acid bacteria on the dough rheology, retention and stabilization of gas cells in a whole wheat flour dough system – A review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Probiotics in the Sourdough Bread Fermentation: Current Status. FERMENTATION 2023. [DOI: 10.3390/fermentation9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Collapse
|
8
|
Fu W, Jia X, Liu C, Meng X, Zhang K, Tao S, Xue W. Sourdough yeast-bacteria interactions results in reduced immunogenicity by increasing depolymerization and hydrolysis of gluten. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Effect of fermented cream with partial substitution of soy protein isolate on bread quality and volatile compounds. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Xu C, Xiong X, Zeng Q, Yuan Y, He S, Dong L, Huang F, Nag A, Su D. Alteration in dough volume and gluten network of lychee pulp pomace bread base on mixture design dominated by particle size. J Food Sci 2022; 87:3026-3035. [PMID: 35638338 DOI: 10.1111/1750-3841.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
The reducing flavor of whole grain bread has been constantly affecting the consumption desire of a significant proportion of consumers. The study presents the use of lychee pulp pomace (LPP) powder to replace certain proportion of wheat flour and produce wheat bread with better quality, while having minimal effects on the volume and improving the nutritional quality. Distinct particle sizes (60-400 µm) of LPP powder were obtained by superfine or ordinary grinding. Effect of different additive proportions (7-19%) of LPP powder on bread dough quality were studied by constrained mixture designs. The volume of fermented doughs subsequently decreased after adding LPP powder. However, LPP powders with smaller particle sizes were able to minimize this effect due to its higher water-holding capacity. The analyses of gluten network showed that smaller particle sizes of LPP powder resulted in a decrease in surface hydrophobicity and increase in the elasticity and stability of gluten network. Finally, optimum mixture formula was composed of 16% LPP powder with 60 µm particle size and 15% water. The study illustrated the potential to make high-quality bread with small particle size of LPP powder. PRACTICAL APPLICATION: The addition of dietary fiber to wheat flour can adversely affect the dough volume and reduce the dough quality. By reducing the particle size of lychee pulp pomace powder, this adverse effect could be minimized while increasing the content of dietary fiber and bound phenolics in the dough. This provides data for the production of high-quality lychee dough bread.
Collapse
Affiliation(s)
- Canhua Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, P. R. China
| | - Xiong Xiong
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, P. R. China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, P. R. China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, P. R. China
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, P. R. China.,Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia, Australia
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, P. R. China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, P. R. China
| | - Anindya Nag
- School of Information Science and Engineering, Shangdong University, Jinan, P. R. China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, P. R. China
| |
Collapse
|
11
|
Xu D, Guan W, Wu F, Jin Y, Yang N, Jin Z, Xu X. Improvement of baked wheat chips quality by protease-mediated enzymatic hydrolysis of wheat flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Won S, Curtis J, Gänzle M. LC-MS/MS quantitation of α-amylase/trypsin inhibitor CM3 and glutathione during wheat sourdough breadmaking. J Appl Microbiol 2021; 133:120-129. [PMID: 34724302 DOI: 10.1111/jam.15346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
AIMS This study aimed to quantify α-amylase/trypsin inhibitor (ATI) CM3 and glutathione (GSH) during wheat sourdough breadmaking. METHODS AND RESULTS Breads were made with two wheat cultivars and fermented with Fructilactobacillus sanfranciscensis, F. sanfranciscensis ΔgshR or Latilactobacillus sakei; chemically acidified and straight doughs served as controls. Samples were analysed after mixing, after proofing and after baking. GSH and CM3 were quantified by multi-reaction-monitoring-based methods on an LC-QTRAP mass spectrometer. Undigested ATI extracts were further examined by SDS-PAGE. CONCLUSIONS GSH abundance was similar after mixing and after proofing but increased after baking (p < 0.001), regardless of fermentation. In breads baked with cv. Brennan, the samples fermented with lactobacilli had higher GSH abundance (p < 0.001) than in the controls. CM3 relative abundance remained similar after mixing and after proofing but decreased after baking (p < 0.001) across all treatments. This trend was supported by the SDS-PAGE analysis in which ATI band intensities decreased after baking (p < 0.001) in all experimental conditions. The overall effect of baking exerted a greater effect on the abundances of GSH and CM3 than fermentation conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report to quantify ATI over the course of breadmaking by LC-MS/MS in sourdough and straight dough processes.
Collapse
|
13
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
14
|
Zhou J, Yan B, Wu Y, Zhu H, Lian H, Zhao J, Zhang H, Chen W, Fan D. Effects of sourdough addition on the textural and physiochemical attributes of microwaved steamed-cake. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front Bioeng Biotechnol 2021; 9:612285. [PMID: 34055755 PMCID: PMC8149962 DOI: 10.3389/fbioe.2021.612285] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Lactic acid bacteria are a kind of microorganisms that can ferment carbohydrates to produce lactic acid, and are currently widely used in the fermented food industry. In recent years, with the excellent role of lactic acid bacteria in the food industry and probiotic functions, their microbial metabolic characteristics have also attracted more attention. Lactic acid bacteria can decompose macromolecular substances in food, including degradation of indigestible polysaccharides and transformation of undesirable flavor substances. Meanwhile, they can also produce a variety of products including short-chain fatty acids, amines, bacteriocins, vitamins and exopolysaccharides during metabolism. Based on the above-mentioned metabolic characteristics, lactic acid bacteria have shown a variety of expanded applications in the food industry. On the one hand, they are used to improve the flavor of fermented foods, increase the nutrition of foods, reduce harmful substances, increase shelf life, and so on. On the other hand, they can be used as probiotics to promote health in the body. This article reviews and prospects the important metabolites in the expanded application of lactic acid bacteria from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Yaqi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiangtao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxin Lv
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Meluleki Hungwe
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jinju Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojia Bai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Weitao Geng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
16
|
Degradation of Wheat Germ Agglutinin during Sourdough Fermentation. Foods 2021; 10:foods10020340. [PMID: 33562539 PMCID: PMC7915439 DOI: 10.3390/foods10020340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Non Celiac Wheat Sensitivity (NCWS) is an intolerance to wheat products and individuals with NCWS often adhere to a gluten free diet. However, gluten free diets are often associated with a reduced sensory and nutritional quality. Wheat Germ Agglutinin (WGA) is one of the wheat components linked to NCWS. This study explored the fate of WGA during sourdough fermentation. To assess the role of thiol-exchange reactions and proteolysis, sourdoughs were fermented with Fructilactobacillus sanfranciscensis DSM20451, F. sanfranciscensis DSM20451ΔgshR, which lacks glutathione reductase activity, or Latilactobacillus sakei TMW1.22, with or without addition of fungal protease. The conversion of WGA was determined by size exclusion chromatography of fluorescence-labeled WGA, and by enzyme-linked immunosorbent assay (ELISA). Commercial whole wheat flour contained 6.6 ± 0.7 μg WGA/g. After fermentation with L. sakei TMW1.22 and F. sanfranciscensis DSM20451, the WGA content was reduced (p < 0.05) to 2.7 ± 0.4 and 4.3 ± 0.3 μg WGA/g, respectively, while the WGA content remained unchanged in chemically acidified controls or in doughs fermented with F. sanfranciscensis DSM20451ΔgshR. Protease addition did not affect the WGA content. In conclusion, the fate of WGA during sourdough fermentation relates to thiol-exchange reactions but not to proteolytic degradation.
Collapse
|
17
|
Recent research advances of lactic acid bacteria in sourdough: origin, diversity, and function. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Garzon R, Skendi A, Antonio Lazo-Velez M, Papageorgiou M, Rosell CM. Interaction of dough acidity and microalga level on bread quality and antioxidant properties. Food Chem 2020; 344:128710. [PMID: 33272764 DOI: 10.1016/j.foodchem.2020.128710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Microalgae nutritional and healthy dietary pattern might be affected by processes like breadmaking when used as ingredient. This study aims to determine the role of dough acidification on the nutritional pattern of Chlorella vulgaris enriched breads. Different levels of microalga (1%, 2% and 3%) were incorporated in the recipe in the presence of either 10% sourdough or chemically acidified doughs. Dough and bread characteristics were evaluated. Addition of microalga reduced the slice area and increased the crumb hardness, but it could be counteracted by increasing dough hydration and adapting proofing time. Doughs and breads enriched with microalga had green color. Dough acidification led to softer breads and enhanced the antioxidant activity of enriched breads. Microalgae incorporation increased the protein and ash content of the breads. Microalgae enriched breads made with chemically acidified doughs or sourdoughs had higher Total Phenolic Content and antioxidant activity as assessed by FRAP and ABTS methods.
Collapse
Affiliation(s)
- Raquel Garzon
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/ Agustin Escardino, 7, Paterna 46980, Valencia, Spain
| | - Adriana Skendi
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/ Agustin Escardino, 7, Paterna 46980, Valencia, Spain; Department of Food Science and Technology, International Hellenic University, POB 141, GR-57400 Thessaloniki, Greece
| | - Marco Antonio Lazo-Velez
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/ Agustin Escardino, 7, Paterna 46980, Valencia, Spain; Universidad del Azuay, Grupos Estratégicos de investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de mayo 7-77, Apartado01.01.981, Cuenca, Ecuador
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, POB 141, GR-57400 Thessaloniki, Greece
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/ Agustin Escardino, 7, Paterna 46980, Valencia, Spain.
| |
Collapse
|
19
|
Guo L, Xu D, Fang F, Jin Z, Xu X. Effect of glutathione on wheat dough properties and bread quality. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Guo L, Fang F, Zhang Y, Xu D, Jin Z, Xu X. Glutathione affects rheology and water distribution of wheat dough by changing gluten conformation and protein depolymerisation. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lunan Guo
- The State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
| | - Fang Fang
- Whistler Center for Carbohydrate Research Department of Food Science Purdue University 745 Agriculture Mall Dr West Lafayette IN47907USA
| | - Yao Zhang
- The State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
| | - Dan Xu
- The State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
| | - Xueming Xu
- The State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
| |
Collapse
|
21
|
Xu D, Zhang H, Xi J, Jin Y, Chen Y, Guo L, Jin Z, Xu X. Improving bread aroma using low-temperature sourdough fermentation. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Guo L, Fang F, Zhang Y, Xu D, Xu X, Jin Z. Effect of glutathione on gelatinization and retrogradation of wheat flour and starch. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Xu D, Hu Y, Wu F, Jin Y, Xu X, Gänzle MG. Comparison of the Functionality of Exopolysaccharides Produced by Sourdough Lactic Acid Bacteria in Bread and Steamed Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8907-8914. [PMID: 32806122 DOI: 10.1021/acs.jafc.0c02703] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exopolysaccharides (EPSs) produced by lactic acid bacteria improve the quality of bread; however, their functionality in steamed bread is unknown. This study aimed to compare the impact of EPS produced during sourdough fermentation on the quality of bread and steamed bread. Sourdoughs were fermented with EPS-producing Fructilactobacillus sanfranciscensis, Weissella cibaria, and Leuconostoc mesenteroides; Latilactobacillus sakei LS8 and chemically acidified sourdough were prepared as controls. EPS production generally enhanced the specific volume, improved the texture, and reduced the staling rate of bread. The effect of EPS on steamed bread quality was more pronounced when compared to its effect on bread quality. Remarkably, the beneficial effects of F. sanfranciscensis bread quality were largely independent of EPS formation and may relate to gluten modifications rather than EPS production. In conclusion, the direct comparison of sourdough and EPS functionality in steaming and baking provides novel insights for the optimization of commercial (steamed) bread production.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P.R. China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Ying Hu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Fengfeng Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P.R. China
| | - Yamei Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P.R. China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P.R. China
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
- College of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, P.R. China
| |
Collapse
|
24
|
Screening of Lactic Acid Bacteria and Yeasts from Sourdough as Starter Cultures for Reduced Allergenicity Wheat Products. Foods 2020; 9:foods9060751. [PMID: 32517155 PMCID: PMC7353608 DOI: 10.3390/foods9060751] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/27/2023] Open
Abstract
Previous researchers have shown the potential of sourdough or related lactic acid bacteria in reducing wheat allergens. However, there are no mixed or single cultures for producing reduced allergenicity wheat products. In this study, twelve strains of lactic acid bacteria and yeast isolated from sourdough were evaluated for their ability to hydrolyze proteins and ferment dough. Strain Pediococcus acidilacticiXZ31 showed higher proteolytic activity on both casein and wheat protein substrates, and had strong ability to reduce wheat protein allergenicity. The tested Saccharomyces and non-Saccharomyces showed limited proteolysis. Strains Torulaspora delbrueckii JM1 and Saccharomyces cerevisiae JM4 demonstrated a higher capacity to ferment dough compared to other yeasts. These strains may be applied as starters for the preparation of reduced allergenicity wheat products.
Collapse
|
25
|
Yu W, Xu D, Zhang H, Guo L, Hong T, Zhang W, Jin Y, Xu X. Effect of pigskin gelatin on baking, structural and thermal properties of frozen dough: Comprehensive studies on alteration of gluten network. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105591] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Isolation of yeast strains from Chinese liquor Daqu and its use in the wheat sourdough bread making. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Xu D, Zhang Y, Tang K, Hu Y, Xu X, Gänzle MG. Effect of Mixed Cultures of Yeast and Lactobacilli on the Quality of Wheat Sourdough Bread. Front Microbiol 2019; 10:2113. [PMID: 31552010 PMCID: PMC6746982 DOI: 10.3389/fmicb.2019.02113] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
In this study, mixed starter cultures of yeast and lactobacilli were used for type I sourdough bread making to evaluate their ability to improve bread quality and increase the amount of flavor volatiles. Kazachstania humilis, Saccharomyces cerevisiae, Wickerhamomyces anomalus, and Lactobacillus sanfranciscensis DSM20451T and Lactobacillus sakei LS8 were used in different combinations to ferment wheat sourdough. S. cerevisiae produced the highest amount of CO2 among all strains and thus enhanced bread volume and crumb texture. S. cerevisiae also increased the free thiol level in bread dough, and this study confirms that thiol accumulation was not strongly related to the content of the glutenin macropolymer (GMP) or bread volume. The role of thiol exchange reactions on bread quality differs between long fermentation sourdough and straight dough with baker's yeast only. The influence of different starter cultures on wheat sourdough bread volatiles was established by using head space solid-phase microextraction and gas chromatography/mass spectrometry analysis (SPME-GC/MS). The sourdough breads fermented with a combination of lactobacilli and yeast had a more complex profile of volatiles, particularly with respect to esters.
Collapse
Affiliation(s)
- Dan Xu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Yao Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kaixing Tang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Ying Hu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Xueming Xu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- College of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
28
|
Zhang G, Tu J, Sadiq FA, Zhang W, Wang W. Prevalence, Genetic Diversity, and Technological Functions of theLactobacillus sanfranciscensisin Sourdough: A Review. Compr Rev Food Sci Food Saf 2019; 18:1209-1226. [DOI: 10.1111/1541-4337.12459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Guohua Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Jian Tu
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | | | - Weizhen Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Wei Wang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| |
Collapse
|
29
|
Wang P, Liu K, Yang R, Gu Z, Zhou Q, Jiang D. Comparative Study on the Bread Making Quality of Normoxia- and Hypoxia-Germinated Wheat: Evolution of γ-Aminobutyric Acid, Starch Gelatinization, and Gluten Polymerization during Steamed Bread Making. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3480-3490. [PMID: 30817141 DOI: 10.1021/acs.jafc.9b00200] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To explore the bread making characteristics of germinated wheat flour, the current study focused on the componential evolution throughout the steamed bread making process. Hypoxia-germinated wheat (HGW) dough produced the maximum γ-aminobutyric acid as a result of high glutamic acid decarboxylase activity during fermentation compared to normoxia-germinated wheat (NGW) and sound wheat (SW). HGW was superior to NGW in terms of rheological properties and restored the organoleptic characteristics as SW bread. Blocking of α-amylase activity and protein polymerization demonstrated that the decline in pasting and gelation properties was not caused by changes in intrinsic starch and protein properties. Polymerization of α- and γ-gliadin to glutenin was facilitated in germinated wheat bread, while the cross-linking degree of glutenin-gliadin was suppressed. In comparison to NGW bread, more high-molecular-weight glutenin subunits but less α-gliadin fractions polymerized upon steaming of HGW dough. Results demonstrate that HGW has great potential to be exploited as a nutritious functional ingredient for wheat-based food.
Collapse
|