1
|
Li YM, Shen CY, Jiang JG. Sedative and hypnotic effects of the saponins from a traditional edible plant Liriope spicata Lour. in PCPA-induced insomnia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118049. [PMID: 38484954 DOI: 10.1016/j.jep.2024.118049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liriope spicata Lour., a species listed in the catalogue of 'Medicinal and Edible Homologous Species', is traditionally used for the treatment of fatigue, restlessness, insomnia and constipation. AIM OF THE STUDY This study is aimed to evaluate the sedative and hypnotic effect of the saponins from a natural plant L. spicata Lour. in vivo. MATERIALS AND METHODS The total saponin (LSTS) and purified saponin (LSPS) were extracted from L. spicata, followed by a thorough analysis of their major components using the HPLC-MS. Subsequently, the therapeutic efficacy of LSTS and LSPS was evaluated by the improvement of anxiety and depression behaviors of the PCPA-induced mice. RESULTS LSTS and LSPS exhibited similar saponin compositions but differ in their composition ratios, with liriopesides-type saponins accounting for a larger proportion in LSTS. Studies demonstrated that both LSTS and LSPS can extend sleep duration and immobility time, while reducing sleep latency in PCPA-induced mice. However, there was no significant difference in weight change among the various mice groups. Elisa results indicated that the LSTS and LSPS could decrease levels of NE, DA, IL-6, and elevate the levels of 5-HT, NO, PGD2 and TNF-α in mice plasma. LSTS enhanced the expression of neurotransmitter receptors, while LSPS exhibited a more pronounced effect in regulating the expression of inflammatory factors. In conclusion, the saponins derived from L. spicata might hold promise as ingredients for developing health foods with sedative and hypnotic effects, potentially related to the modulation of serotonergic and GABAAergic neuron expression, as well as immunomodulatory process.
Collapse
Affiliation(s)
- Yi-Meng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chun-Yan Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Southern Medical University, School of Traditional Chinese Medicine, Guangzhou, 510515, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Huang YP, Wang YS, Liu YY, Jiang CH, Wang J, Jiang XY, Liu BW, Wang L, Ye WC, Zhang J, Yin ZQ, Pan K. Chemical Characterization and Atherosclerosis Alleviation Effects of Gypenosides from Gynostemma pentaphyllum through Ameliorating Endothelial Dysfunction via the PCSK9/LOX-1 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11944-11957. [PMID: 36120893 DOI: 10.1021/acs.jafc.2c02681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dietary saponins have the potential to ameliorate atherosclerosis (AS). Gypenosides of Gynostemma pentaphyllum (GPs) have been used as functional foods to exhibit antiatherosclerotic activity. The present study aimed to explore the protective effect, underlying mechanism and active substances of GPs on AS in vivo and in vitro. Results demonstrated GPs administration reduced the serum concentrations of TC and LDL-C, upregulated the plasma HDL-C content, inhibited the secretion of ICAM-1, VCAM-1, and MCP-1, and alleviated vascular lesions in VitD3 plus high cholesterol diet-induced AS rats as well as reduced adhesion factors levels in ox-LDL-stimulated HUVECs, which was potentially associated with suppressing PCSK9/LOX-1 pathway. Further activity-guided phytochemical investigation of GPs led to the identification of five new dammarane-type glycosides (1-5) and ten known analogs (6-15). Bioassay evaluation showed compounds 1, 6, 7, 12, 13, and 14 observably reduced the expressions of PCSK9 and LOX-1, as well as the secretion of adhesion factors in injured HUVECs. Molecular docking experiments suggested that the active saponins of GPs might bind to the allosteric pocket of PCSK9 located at the catalytic and C-terminal domains, and 2α-OH-protopanaxadiol-type gypenosides might exert a higher affinity for an allosteric binding site on PCSK9 by hydrogen-bond interaction with ARG-458. These findings provide new insights into the potential nutraceutical application of GPs and their bioactive compounds in the prevention and discovery of novel therapeutic strategies for AS.
Collapse
Affiliation(s)
- Ya-Ping Huang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun-Shan Wang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Nephrology Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yuan-Yuan Liu
- Nephrology Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Cui-Hua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jie Wang
- Instrumental Analysis Center of CPU, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Yu Jiang
- Hunan Huabaotong Pharmaceutical Co., Ltd., Changsha 410331, China
| | - Bi-Wen Liu
- Nephrology Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, China
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jian Zhang
- Nephrology Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ke Pan
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Weidong Wang, Zhang J, Liu Z, Zhu Y, Mei L, Tao Y, Jiang L. Xanthotoxol from Saussurea obvallata Attenuates LPS-Induced RAW 264.7 Cells Inflammatory Responses through NF-κB Pathway. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Gypenoside-Induced Apoptosis via the PI3K/AKT/mTOR Signaling Pathway in Bladder Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9304552. [PMID: 35402614 PMCID: PMC8984741 DOI: 10.1155/2022/9304552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is a natural herbal drug that has been widely used to treat many diseases. The antitumor effects of G. pentaphyllum were first described in the illustrated catalog of plants. Gypenosides are the major active components of G. pentaphyllum, and they have been widely reported to possess antitumor effects in prostate cancer, gastric cancer, hepatocellular carcinoma, colon cancer, lung cancer, and breast cancer. However, research on the use of gypenoside in the treatment of bladder cancer has not been conducted. In this study, we explored the potential molecular mechanisms of gypenosides in the treatment of bladder cancer using network pharmacology and experimental validation. First, we used a network pharmacology-based method to identify both the effective components of gypenosides and the molecular mechanism underlying their antibladder cancer effects. The results were further confirmed by molecular docking, CCK8 and colony formation assays, and cell cycle and cell apoptosis analyses. Additionally, a mouse xenograft model of bladder cancer was used to investigate the antitumor effect of gypenosides in vivo. We identified 10 bioactive ingredients and 163 gene targets of gypenosides. Network exploration suggested that VEGFA, STAT3, and PI3KCA may be candidate agents for the antibladder cancer effect of gypenosides. In addition, analysis of the Kyoto Encyclopedia of Genes and Genomes pathway revealed that the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway may play a crucial role in the mechanism of action of gypenosides against bladder cancer. Molecular docking revealed that gypenosides combine well with PI3K, AKT, and mTOR. As expected, gypenosides displayed apoptosis-inducing properties in bladder cancer cells by inactivating the PI3K/AKT/mTOR signaling pathway in vitro. Furthermore, gypenosides significantly (P < 0.05) inhibited the growth of bladder cancer cells in vivo. Mechanistically, gypenosides induced the apoptosis of bladder cancer cells via inactivation of the PI3K/AKT/mTOR signaling pathway.
Collapse
|
5
|
Huang YP, Wang YS, Liu BW, Song Z, Liang XS, Teng Y, Zhang J, Yin ZQ, Pan K. Dammarane-type saponins with proprotein convertase subtilisin/kexin type 9 inhibitory activity from Gynostemma pentaphyllum. PHYTOCHEMISTRY 2022; 194:113005. [PMID: 34798409 DOI: 10.1016/j.phytochem.2021.113005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Seven undescribed dammarane-type saponins, gypenosides LXXXI-LXXXVII, together with four known compounds, were isolated from the whole herb of Gynostemma pentaphyllum. The chemical structures of these undescribed compounds were elucidated on the basis of physical and spectroscopic analysis and comparison with literature data. All the isolates were evaluated for their proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitory activities in HepG2 cells. Among them, gypenosides LXXXII-LXXXVII, gynosaponin II, IV and VI suppressed the expression of PCSK9 in LPDS-induced HepG2 cells at 20 μM; gypenosides LXXXII, LXXXV and LXXXVII showed inhibitory activities against PCSK9 at 10 μM; notably, gypenoside LXXXII still exhibited inhibitory activity against PCSK9 at 5 μM.
Collapse
Affiliation(s)
- Ya-Ping Huang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Cardiology Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, People's Republic of China; Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Yun-Shan Wang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Bi-Wen Liu
- Cardiology Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, People's Republic of China
| | - Zhe Song
- Instrumental Analysis Center of CPU, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, People's Republic of China
| | - Xiao-Shuang Liang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Yuan Teng
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Jian Zhang
- Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China.
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Ke Pan
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Chen Q, Huang Y, Zhao R, Sun J, Yuan X, Xu H, Liu H, Wu Y. Gene excavation and expression analysis of CYP and UGT related to the post modifying stage of gypenoside biosynthesis in Gynostemma pentaphyllum (Thunb.) Makino by comprehensive analysis of RNA and proteome sequencing. PLoS One 2021; 16:e0260027. [PMID: 34874937 PMCID: PMC8651138 DOI: 10.1371/journal.pone.0260027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Previous studies have revealed that gypenosides produced from Gynostemma pentaphyllum (Thunb.) Makino are mainly dammarane-type triterpenoid saponins with diverse structures and important biological activities, but the mechanism of diversity for gypenoside biosynthesis is still unclear. In this study, a combination of isobaric tags for relative and absolute quantification (iTRAQ) proteome analysis and RNA sequencing transcriptome analysis was performed to identify the proteins and genes related to gypenoside biosynthesis. A total of 3925 proteins were identified by proteomic sequencing, of which 2537 were quantified. Seventeen cytochrome P450 (CYP) and 11 uridine 5’-diphospho-glucuronosyltransferase (UDP-glucuronosyltransferase, UGT) candidate genes involved in the side chain synthesis and modification of gypenosides were found. Seven putative CYPs (CYP71B19, CYP77A3, CYP86A7, CYP86A8, CYP89A2, CYP90A1, CYP94A1) and five putative UGTs (UGT73B4, UGT76B1, UGT74F2, UGT91C1 and UGT91A1) were selected as candidate structural modifiers of triterpenoid saponins, which were cloned for gene expression analysis. Comprehensive analysis of RNA sequencing and proteome sequencing showed that some CYPs and UGTs were found at both the transcription and translation levels. In this study, an expression analysis of 7 CYPs and 5 UGTs that contributed to gypenoside biosynthesis and distribution in G. pentaphyllum was performed, providing consistent results that will inspire more future research on vital genes/proteins involved in gypenoside biosynthesis.
Collapse
Affiliation(s)
- Yangmei Zhang
- Key Laboratory of Biological Molecular Medicine Research of Guangxi Higher Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi province, China
- Department of Nursing, Sichuan Nursing Vocational College, Sichuan province, China
| | - Qicong Chen
- Key Laboratory of Biological Molecular Medicine Research of Guangxi Higher Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi province, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong province, China
| | - Yuanheng Huang
- Key Laboratory of Biological Molecular Medicine Research of Guangxi Higher Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi province, China
| | - Ruiqiang Zhao
- Key Laboratory of Biological Molecular Medicine Research of Guangxi Higher Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi province, China
| | - Jian Sun
- Key Laboratory of Biological Molecular Medicine Research of Guangxi Higher Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi province, China
| | - Xidong Yuan
- Key Laboratory of Biological Molecular Medicine Research of Guangxi Higher Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi province, China
| | - Huiming Xu
- Key Laboratory of Biological Molecular Medicine Research of Guangxi Higher Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi province, China
| | - Huiyu Liu
- Key Laboratory of Biological Molecular Medicine Research of Guangxi Higher Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi province, China
| | - Yaosheng Wu
- Key Laboratory of Biological Molecular Medicine Research of Guangxi Higher Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi province, China
- * E-mail:
| |
Collapse
|
7
|
Cui WY, Jin Y, Liu H, Zu ML, Zhai XF, Yang C, Gu YL, Cheng Y, Piao XL. Dammarane-type saponins from Gynostemma pentaphyllum and their cytotoxicities. Nat Prod Res 2021; 35:4433-4441. [PMID: 32037885 DOI: 10.1080/14786419.2020.1723093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 12/19/2022]
Abstract
Heat-processed Gynostemma pentaphyllum has shown strong activity against human lung carcinoma A549 cells. In this study, two dammarane-type saponins together with two known compounds were isolated from the ethanol extract of the heat-processed leaves of G. pentaphyllum. They were identified as 2α,3β,12β-trihydroxydammar-20(22),24-diene-3-O-β-D-glucopyranoside (1, namely damulin E), 2α,3β,12β-trihydroxydammar-20,24-diene-3-O-β-D-glucopyranoside (2, namely damulin F), damulin A (3) and damulin B (4), respectively, using NMR and mass spectra. Damulin E and damulin F showed moderate activity against A549, H1299, T24, SH-SY5Y and K562 cell lines in vitro using CCK-8 assay.
Collapse
Affiliation(s)
- Wei-Ye Cui
- Center on Translational Neuroscience and School of Pharmacy, Minzu University of China, Beijing, China
| | - Yulian Jin
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hui Liu
- Center on Translational Neuroscience and School of Pharmacy, Minzu University of China, Beijing, China
| | - Ma-Li Zu
- Center on Translational Neuroscience and School of Pharmacy, Minzu University of China, Beijing, China
| | - Xin-Fang Zhai
- Center on Translational Neuroscience and School of Pharmacy, Minzu University of China, Beijing, China
| | - Ce Yang
- Center on Translational Neuroscience and School of Pharmacy, Minzu University of China, Beijing, China
| | - Yu-Long Gu
- Center on Translational Neuroscience and School of Pharmacy, Minzu University of China, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience and School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiang-Lan Piao
- Center on Translational Neuroscience and School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
8
|
Keilhoff G, Ludwig C, Pinkernelle J, Lucas B. Effects of Gynostemma pentaphyllum on spinal cord motor neurons and microglial cells in vitro. Acta Histochem 2021; 123:151759. [PMID: 34425524 DOI: 10.1016/j.acthis.2021.151759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 11/18/2022]
Abstract
The regenerative capability of spinal cord neurons is limited to impossible. Thus, experimental approaches supporting reconstruction/regeneration are in process. This study focused on the evaluation of the protective potency of an extract from Gynostemma pentaphyllum (GP), a plant used in traditional medicine with anti-oxidative and neuroprotective activities, in vitro on organotypic spinal cord cultures, the motor-neuron-like NSC-34 cell line and the microglial cell line BV-2. Organotypic cultures were mechanically stressed by the slicing procedure and the effect of GP on motor neuron survival and neurite sprouting was tested by immunohistochemistry. NSC-34 cells were neuronal differentiated by using special medium. Afterwards, cell survival (propidium iodide/fluorescein diacetate labeling), proliferation (BrdU-incorporation), and neurite sprouting were evaluated. BV-2 cells were stimulated with LPS/interferon γ and subjected to migration assay and nanoparticle uptake. Cell survival, proliferation and the expression pattern of different microglial activation markers (cFOS, iNOS) as well as transcription factors (PPARγ, YB1) were analyzed. In organotypic cultures, high-dose GP supported survival of motor neurons and especially of the neuronal fiber network. Despite reduced neurodegeneration, however, there was a GP-mediated activation of astro- and microglia. In NSC-34 cells, high-dosed GP had degenerative and anti-proliferative effects, but only in normal medium. Moreover, GP supported the neuro-differentiation ability. In BV-2 cells, high-dosed GP was toxic. In lower dosages, GP affected cell survival and proliferation when combined with LPS/interferon γ. Nanoparticle uptake, migration ability, and the transcription factor PPARγ, however, GP affected directly. The data suggest positive effects of GP on injured spinal motor neurons. Moreover, GP activated microglial cells. The dual role of microglia (protective/detrimental) in neurodegenerative processes required further experiments to enhance the knowledge about GP effects. Therefore, a possible clinical use of GP in spinal cord injuries is still a long way off.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany.
| | - Christina Ludwig
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| | - Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| | - Benjamin Lucas
- Dept. of Trauma Surgery, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
9
|
Li X, Alhasani RH, Cao Y, Zhou X, He Z, Zeng Z, Strang N, Shu X. Gypenosides Alleviate Cone Cell Death in a Zebrafish Model of Retinitis Pigmentosa. Antioxidants (Basel) 2021; 10:antiox10071050. [PMID: 34209942 PMCID: PMC8300748 DOI: 10.3390/antiox10071050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of visual disorders caused by mutations in over 70 genes. RP is characterized by initial degeneration of rod cells and late cone cell death, regardless of genetic abnormality. Rod cells are the main consumers of oxygen in the retina, and after the death of rod cells, the cone cells have to endure high levels of oxygen, which in turn leads to oxidative damage and cone degeneration. Gypenosides (Gyp) are major dammarane-type saponins of Gynostemma pentaphyllum that are known to reduce oxidative stress and inflammation. In this project we assessed the protective effect of Gyp against cone cell death in the rpgrip1 mutant zebrafish, which recapitulate the classical pathological features found in RP patients. Rpgrip1 mutant zebrafish were treated with Gyp (50 µg/g body weight) from two-months post fertilization (mpf) until 6 mpf. Gyp treatment resulted in a significant decrease in cone cell death compared to that of untreated mutant zebrafish. A markedly low level of reactive oxygen species and increased expression of antioxidant genes were detected in Gyp-incubated mutant zebrafish eyes compared to that of untreated mutant zebrafish. Similarly, the activities of catalase and superoxide dismutase and the level of glutathione were significantly increased in Gyp-treated mutant zebrafish eyes compared to that of untreated mutant zebrafish. Gyp treatment also decreased endoplasmic reticulum stress in rpgrip1 mutant eyes. Expression of proinflammatory cytokines was also significantly decreased in Gyp-treated mutant zebrafish eyes compared to that of untreated mutant zebrafish. Network pharmacology analysis demonstrated that the promotion of cone cell survival by Gyp is possibly mediated by multiple hub genes and associated signalling pathways. These data suggest treatment with Gyp will benefit RP patients.
Collapse
Affiliation(s)
- Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Y.C.); (Z.H.)
| | - Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.H.A.); (X.Z.)
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21961, Saudi Arabia
| | - Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Y.C.); (Z.H.)
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.H.A.); (X.Z.)
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Y.C.); (Z.H.)
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China;
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Y.C.); (Z.H.)
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.H.A.); (X.Z.)
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
- Correspondence:
| |
Collapse
|
10
|
Phu HT, Thuan DTB, Nguyen THD, Posadino AM, Eid AH, Pintus G. Herbal Medicine for Slowing Aging and Aging-associated Conditions: Efficacy, Mechanisms and Safety. Curr Vasc Pharmacol 2020; 18:369-393. [PMID: 31418664 DOI: 10.2174/1570161117666190715121939] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
Aging and aging-associated diseases are issues with unsatisfactory answers in the medical field. Aging causes important physical changes which, even in the absence of the usual risk factors, render the cardiovascular system prone to some diseases. Although aging cannot be prevented, slowing down the rate of aging is entirely possible to achieve. In some traditional medicine, medicinal herbs such as Ginseng, Radix Astragali, Ganoderma lucidum, Ginkgo biloba, and Gynostemma pentaphyllum are recognized by the "nourishing of life" and their role as anti-aging phytotherapeutics is increasingly gaining attention. By mainly employing PubMed here we identify and critically analysed 30 years of published studies focusing on the above herbs' active components against aging and aging-associated conditions. Although many plant-based compounds appear to exert an anti-aging effect, the most effective resulted in being flavonoids, terpenoids, saponins, and polysaccharides, which include astragaloside, ginkgolide, ginsenoside, and gypenoside specifically covered in this review. Their effects as antiaging factors, improvers of cognitive impairments, and reducers of cardiovascular risks are described, as well as the molecular mechanisms underlying the above-mentioned effects along with their potential safety. Telomere and telomerase, PPAR-α, GLUTs, FOXO1, caspase-3, bcl-2, along with SIRT1/AMPK, PI3K/Akt, NF-κB, and insulin/insulin-like growth factor-1 pathways appear to be their preferential targets. Moreover, their ability to work as antioxidants and to improve the resistance to DNA damage is also discussed. Although our literature review indicates that these traditional herbal medicines are safe, tolerable, and free of toxic effects, additional well-designed, large-scale randomized control trials need to be performed to evaluate short- and long-term effects and efficacy of these medicinal herbs.
Collapse
Affiliation(s)
- Hoa T Phu
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Duong T B Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Thi H D Nguyen
- Department of Physiology, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Anna M Posadino
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
11
|
Ran M, Cha C, Xu Y, Zhang H, Yang Z, Li Z, Wang S. Traditional Chinese herbal medicine complex supplementation improves reproductive performance, serum biochemical parameters, and anti-oxidative capacity in periparturient dairy cows. Anim Biotechnol 2020; 33:647-656. [PMID: 32930627 DOI: 10.1080/10495398.2020.1819823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study was conducted to investigate the effects of a traditional Chinese herbal medicine complex (TCHMC) on the productive performance of periparturient dairy cows. Eighteen non-lactating pregnant Holstein dairy cows with similar body conditions with 1 to 2 parity were randomly divided into three groups (n = 6), receiving a basal diet with 0 (CON group), 200 (T-200 group), and 300 (T-300 group) g TCHMC per day from 14 to 9 days prepartum. The results demonstrated that TCHMC treatments decreased the days of gestation, calving to first service, and calving to first visible estrus. Compared with CON at specific time points, TCHMC treatments increased the concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2), whereas progesterone (P4) and E2 concentrations decreased. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and creatine kinase (CK) concentrations were downregulated, whereas that of globulin (GLB) and immunoglobulin G (IgG) were upregulated by TCHMC treatments around the time of calving. Compared with CON and T-200 treatments, the T-300 treatment increased the serum concentrations of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) and decreased the malondialdehyde (MDA) concentration from 7 d prepartum to 21 d postpartum when. In addition, although TCHMC treatment had no effect on average birth weight, heart rate, respiratory rate, and body temperature of calves, the T-300 treatment increased serum albumin (ALB) and IgG concentrations in calves from 3 to 14 days postpartum. The addition of TCHMC used in the present study could serve as a potential effective strategy to improve the health and productive performance of periparturient dairy cows, and the optimal dose should be set at 300 g per day.
Collapse
Affiliation(s)
- Maoliang Ran
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Cheng Cha
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Youtao Xu
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongliang Zhang
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zecao Yang
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhicai Li
- Hunan Deren Husbandry Company Ltd, Changsha, China
| | - Shuilian Wang
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Changsha, China
| |
Collapse
|
12
|
Li H, Xi Y, Xin X, Tian H, Hu Y. Gypenosides regulate farnesoid X receptor-mediated bile acid and lipid metabolism in a mouse model of non-alcoholic steatohepatitis. Nutr Metab (Lond) 2020; 17:34. [PMID: 32377219 PMCID: PMC7195801 DOI: 10.1186/s12986-020-00454-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Gypenosides (Gyp) are the main ingredient of the Chinese medicine, Gynostemma pentaphyllum. They are widely used in Asia as a hepatoprotective agent. Here, we elucidated the mechanism of Gyp in non-alcoholic steatohepatitis (NASH) with a focus on farnesoid X receptor (FXR)-mediated bile acid and lipid metabolic pathways. Methods NASH was induced in mice by high-fat diet (HFD) feeding, while mice in the control group were given a normal diet. At the end of week 10, HFD-fed mice were randomly divided into HFD, HFD plus Gyp, and HFD plus obeticholic acid (OCA, FXR agonist) groups and were given the corresponding treatments for 4 weeks. Next, we analyzed the histopathological changes as well as the liver triglyceride (TG) level and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), fasting blood glucose (FBG), fasting insulin (FINS), TG, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels as well as the bile acid profile. We carried out RT-PCR and western blotting to detect HFD-induced alterations in gene/protein expression related to bile acid and lipid metabolism. Results The HFD group had histopathological signs of hepatic steatosis and vacuolar degeneration. The liver TG and serum ALT, AST, FBG, FINS, TC, and LDL-C levels as well as the total bile acid level were significantly higher in the HFD group than in the control group (P < 0.01). In addition, we observed significant changes in the expression of proteins involved in bile acid or lipid metabolism (P < 0.05). Upon treatment with Gyp or OCA, signs of hepatic steatosis and alterations in different biochemical parameters were significantly improved (P < 0.05). Further, HFD-induced alterations in the expression genes involved in bile acid and lipid metabolism, such as CYP7A1, BSEP, SREBP1, and FASN, were significantly alleviated. Conclusions Gyp can improve liver lipid and bile acid metabolism in a mouse model of NASH, and these effects may be related to activation of the FXR signaling pathway.
Collapse
Affiliation(s)
- Hongshan Li
- 1Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Liver Disease Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, 315010 Zhejiang China
| | - Yingfei Xi
- 4Medical School of Ningbo University, Ningbo, Zhejiang China
| | - Xin Xin
- 1Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huajie Tian
- 1Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Hu
- 1Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Wang B, Li M, Gao H, Sun X, Gao B, Zhang Y, Yu L. Chemical composition of tetraploid Gynostemma pentaphyllum gypenosides and their suppression on inflammatory response by NF-κB/MAPKs/AP-1 signaling pathways. Food Sci Nutr 2020; 8:1197-1207. [PMID: 32148825 PMCID: PMC7020333 DOI: 10.1002/fsn3.1407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The chemical composition and anti-inflammatory activity of gypenosides isolated from tetraploid Gynostemma pentaphyllum (GP) leaves were investigated. The gypenosides accounted for 7.43 mg/g of the tested GP sample, which were composed of four major saponins including isomers of gypenoside 1 and 2 (C47H76O18), 3 (C47H76O17), and 4 (C46H74O17). Pretreatment of gypenosides reduced mRNA expressions of the proinflammatory mediators in LPS-stimulated RAW264.7 macrophage cells, such as IL-6, IL-1β, COX-2, and TNF-α in a dose-dependent manner. The secreted protein levels of IL-6 and TNF-α, and NO production were also decreased by gypenosides within the concentration range of 50-200 μg/ml. Moreover, the mechanism studies demonstrated that gypenosides (200 μg/ml) treatment significantly inhibited the nuclear translocation of nuclear factor-κB and activator protein 1 (c-Fos and c-Jun) through down-regulating the phosphorylation of their upstream IκB kinase and mitogen-activated protein kinases (MAPKs), especially that of c-Jun N-terminal kinase and extracellular regulated protein kinase(JNK and ERK), but not that of the p38 MAPK. These results suggested that the gypenosides might have potential anti-inflammatory effect and use for improving human health.
Collapse
Affiliation(s)
- Bo Wang
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ming Li
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hang Gao
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiangjun Sun
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Boyan Gao
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yaqiong Zhang
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Liangli Yu
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMDUSA
| |
Collapse
|
14
|
Liu XY, Zhang YB, Yang XW, Yang YF, Xu W, Zhao W, Peng KF, Gong Y, Liu NF, Zhang P. Anti-Inflammatory Activity of Some Characteristic Constituents from the Vine Stems of Spatholobus suberectus. Molecules 2019; 24:molecules24203750. [PMID: 31627460 PMCID: PMC6832230 DOI: 10.3390/molecules24203750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The dried vine stems of Spatholobus suberectus are commonly used in traditional Chinese medicine for treating gynecological and cardiovascular diseases. In this study, five new compounds named spasuberol A (2), homovanillyl-4-oxo-nonanoate (5), spasuberol C (6), spasuberoside A (14), and spasuberoside B (15), together with ten known compounds (1, 3, 4, 7–13), were isolated from the dried vine stems of S. suberectus. Their chemical structures were analyzed using spectroscopic assays. This is the first study interpreting the detailed structural information of 4. The anti-inflammatory activity of these compounds was evaluated by reducing nitric oxide overproduction in RAW264.7 macrophages stimulated by lipopolysaccharide. Compounds 1 and 8–10 showed strong inhibitory activity with half maximal inhibitory concentration (IC50) values of 5.69, 16.34, 16.87, and 6.78 μM, respectively, exhibiting higher activity than the positive drug l-N6-(1-iminoethyl)-lysine (l-NIL) with an IC50 value of 19.08 μM. The IC50 values of inhibitory activity of compounds 2 and 4–6 were 46.26, 40.05, 45.87, and 28.29 μM respectively, which were lower than l-NIL, but better than that of positive drug indomethacin with an IC50 value of 55.44 μM. Quantitative real-time polymerase chain reaction analysis revealed that assayed compounds with good anti-inflammatory activity, such as 1, 6, 9, and 10 at different concentrations, can reduce the messenger RNA (mRNA) expression of some pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2). The anti-inflammatory activity and the possible mechanism of the compounds mentioned in this paper were studied preliminarily.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - You-Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yan-Fang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Zhao
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Kai-Feng Peng
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Yun Gong
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Ni-Fu Liu
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Peng Zhang
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| |
Collapse
|