1
|
Zhou Q, Liu Y, Zhang S, Li S, Zhao M, Zhou X, Zhou D, Qian Z. Food safety assessment of genetically modified soybean DBN9004×DBN8002×DBN8205 in a subchronic rodent feeding study. Food Chem Toxicol 2025; 200:115398. [PMID: 40107649 DOI: 10.1016/j.fct.2025.115398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Soybeans provide a nutritionally complete plant-based protein, containing all nine essential amino acids and bioactive compounds. The food safety of a novel triple-stacked genetically modified (GM) soybean, DBN9004 × DBN8002 × DBN8205 was evaluated in a 90-day rat feeding study. The GM soybean, developed through conventional hybridization of three GM lines (DBN9004, DBN8002 and DBN8205), incorporates genes conferring resistance to glyphosate (epsps), glufosinate (pat), and lepidopteran pests (cry1Ac, cry2Ab2, and mVip3Aa). One hundred Wistar Han RCC rats were divided into five groups (n = 10/sex/group) and fed diets containing 15 % or 30 % GM soybean, non-GM soybean (Jack), or a basal diet for 90 days. No treatment-related effects on body weight/gain, food consumption/utilization, clinical signs, mortality, ophthalmology, clinical pathology (hematology, prothrombin time, urinalysis, serum chemistry), organ weights, and gross and microscopic pathology were observed in rats fed with the GM soybean compared to the non-GM Jack and the basal-diet group. In rats, the results of this 90-day feeding study suggest that there were no significant differences in safety between GM soybean DBN9004 × DBN8002 × DBN8205 compared to the non-GM Jack.
Collapse
Affiliation(s)
- Qinghong Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, and NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), Tianjin, 300011, China
| | - Yinghua Liu
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, and NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), Tianjin, 300011, China
| | - Shujing Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, and NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), Tianjin, 300011, China
| | - Shufei Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, and NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), Tianjin, 300011, China
| | - Miao Zhao
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, and NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), Tianjin, 300011, China
| | - Xiaoli Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, and NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), Tianjin, 300011, China
| | - Dianming Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, and NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), Tianjin, 300011, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, and NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), Tianjin, 300011, China.
| |
Collapse
|
2
|
Yadav V, Pal D, Poonia AK. A Study on Genetically Engineered Foods: Need, Benefits, Risk, and Current Knowledge. Cell Biochem Biophys 2024; 82:1931-1946. [PMID: 39020085 DOI: 10.1007/s12013-024-01390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Food requirements have always been a top priority, and with the exponential growth of the human population, there is an increasing need for large quantities of food. Traditional cultivation methods are not able to meet the current demand for food products. One significant challenge is the shortened shelf-life of naturally occurring food items, which directly contributes to food scarcity. Contaminating substances such as weeds and pests play a crucial role in this issue. In response, researchers have introduced genetically engineered (GE) food as a potential solution. These food products are typically created by adding or replacing genes in the DNA of naturally occurring foods. GE foods offer various advantages, including increased quality and quantity of food production, adaptability to various climatic conditions, modification of vitamin and mineral levels, and prolonged shelf life. They address the major concerns of global food scarcity and food security. However, the techniques used in the production of GE foods may not be universally acceptable due to the genetic alteration of animal genes into plants or vice versa. Additionally, their unique nature necessitates further long-term studies. This study delves into the procedures and growth stages of DNA sequencing, covering the benefits, risks, industrial relevance, current knowledge, and future challenges of GE foods. GE foods have the potential to extend the shelf life of food items, alleviate food shortages, and fulfill the current nutritional food demand.
Collapse
Affiliation(s)
- Venkteshwar Yadav
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
| | - Anil Kumar Poonia
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
3
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, Camargo AM, De Sanctis G, Federici S, Fernandez A, Gennaro A, Gómez Ruiz JÁ, Goumperis T, Grammatikou P, Kagkli DM, Lenzi P, Neri FM, Papadopoulou N, Raffaello T. Assessment of genetically modified maize DP202216 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2019-159). EFSA J 2024; 22:e8655. [PMID: 38510324 PMCID: PMC10952026 DOI: 10.2903/j.efsa.2024.8655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Genetically modified maize DP202216 was developed to confer tolerance to glufosinate-ammonium-containing herbicides and to provide an opportunity for yield enhancement under field conditions. These properties were achieved by introducing the mo-pat and zmm28 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP202216 and its comparator needs further assessment, except for the levels of stearic acid (C18:0), which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the PAT and ZMM28 proteins as expressed in maize DP202216, and finds no evidence that the genetic modification would change the overall allergenicity of maize DP202216. In the context of this application, the consumption of food and feed from maize DP202216 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP202216 is as safe as the comparator and non-GM reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP202216 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP202216. The GMO Panel concludes that maize DP202216 is as safe as its comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
4
|
Zhu F, Yan Y, Xue XM, Yu RL, Ye J. Identification and characterization of a phosphinothricin N-acetyltransferase from Enterobacter LSJC7. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105464. [PMID: 37247996 DOI: 10.1016/j.pestbp.2023.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Phosphinothricin (PPT) is a widely used and non-selective herbicide. PPT-resistance genes, especially PPT N-acetyltransferase genes, have been used in the development of transgenic PPT-resistant crops. However, there are only a limited number of available PPT-resistance genes for use in plant biotechnology. In this study, we found that Enterobacter LSJC7 is highly resistant to PPT and can acetylate PPT to N-acetyl phosphinothricin (Ac-PPT). Furthermore, a novel PPT N-acetyltransferase gene, named LsarsN, was identified from LSJC7. When LsarsN was expressed in E. coli AW3110, it confered resistance to PPT. Ac-PPT was detected in both the culture medium and cells of AW3110 expressing the LsarsN-pET22b plasmid. The purified LsArsN protein also showed strong N-acetylation ability in vitro, and its enzymatic kinetic curve was fitted with the Michaelis-Mentan equation. Compared with wild-type LsArsN, both R72A and R74A mutants showed significantly lower PPT N-acetylation ability. In summary, our results systematically characterized LsArsN with strong ability for PPT N-acetylation, which lays the groundwork for future research into the use of this novel gene, LsarsN, to create PPT-resistant crops.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xi-Mei Xue
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Rui-Lian Yu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jun Ye
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Cheng F, Zhang J, Jiang Z, Wu X, Xue Y, Zheng Y. Development of an NAD(H)‐Driven Biocatalytic System for Asymmetric Synthesis of Chiral Amino Acids. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jia‐Min Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhen‐Tao Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xiao‐Hu Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ya‐Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
6
|
Zhao H, Wang C, Lan H. A bHLH transcription factor from Chenopodium glaucum confers drought tolerance to transgenic maize by positive regulation of morphological and physiological performances and stress-responsive genes' expressions. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:74. [PMID: 37309519 PMCID: PMC10236094 DOI: 10.1007/s11032-021-01267-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factor has been shown to play an important role in various physiological processes. However, its functions and mechanisms in drought tolerance still remain poorly understood. Here, we reported a bHLH transcription factor - CgbHLH001 - from Chenopodium glaucum, which was able to confer drought tolerance in maize. CgbHLH001-overexpressed maize lines exhibited drought-tolerant phenotype and improved ear traits by accumulating the contents of soluble sugar and proline and elevating the activities of antioxidant enzymes (SOD, POD, and CAT) under drought stress, accompanying with the upregulation of some stress-related genes, which may balance the redox and osmotic homeostasis compared with the non-transgenic and CgbHLH001-RNAi plants. These findings suggest that CgbHLH001 can confer drought tolerance and has the potential for utilization in improving drought resistance in maize breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01267-4.
Collapse
Affiliation(s)
- Haiju Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Changhai Wang
- Join Hope Seeds Industry Co., Ltd., Changji, 831199 China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| |
Collapse
|