1
|
Fu J, Diao Z, Wang J, Wang H, Zhao J, He Z. Cytochrome P450 Enzyme-Mediated Enantioselective Biotransformation of Chiral Fungicide Tebuconazole in Earthworm. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7099-7110. [PMID: 40098277 DOI: 10.1021/acs.jafc.4c10970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Tebuconazole is widely used in agricultural practices, leading to elevated residue levels in agricultural soils. However, its biotransformation and the ecotoxicological effects of the corresponding transformation products (TPs) remain insufficiently explored. To fill this research gap, the TPs of tebuconazole in an earthworm-soil system were identified by UHPLC-QTOF/MS combined with UHPLC-QLiT/MS. Six chiral TPs were tentatively identified, with four TPs detected in both earthworms and soil, while two TPs were found exclusively in earthworm. Significant enantioselectivity was observed for tebuconazole and five TPs in earthworms, involving cytochrome P450 enzyme-mediated hydroxylation and dechlorination. In vitro metabolism experiments using earthworm microsomes revealed that CYP1A2, CYP2J2, and CYP2E1 were involved in the hydroxylation pathway of tebuconazole. Molecular docking results confirmed that S-(+)-tebuconazole produced more hydroxylated transformation products than R-(-)-tebuconazole due to its lower binding energy with these enzymes. Predictions from the ECOSAR model indicated that hydroxylation was the most significant transformation pathway for reducing the toxicity of tebuconazole. These findings provide valuable insights into the environmental fate and risk assessment of tebuconazole at the enantiomeric level.
Collapse
Affiliation(s)
- Jiqiang Fu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, P. R. China
| | - Ziyang Diao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, P. R. China
| | - Jiafu Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, P. R. China
| | - Hao Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, P. R. China
| | - Jingyang Zhao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, P. R. China
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, P. R. China
| |
Collapse
|
2
|
Hu D, Jia XW, Lu JL, Lu ZY, Tang CD, Xue F, Huang C, Ren QG, He YC. Chemoenzymatic Asymmetric Synthesis of Chiral Triazole Fungicide ( R)-Tebuconazole in High Optical Purity Mediated by an Epoxide Hydrolase from Rhodotorula paludigensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10428-10438. [PMID: 38660720 DOI: 10.1021/acs.jafc.3c07949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Tebuconazole is a chiral triazole fungicide used globally in agriculture as a racemic mixture, but its enantiomers exhibit significant enantioselective dissimilarities in bioactivity and environmental behaviors. The steric hindrance caused by the tert-butyl group makes it a great challenge to synthesize tebuconazole enantiomers. Here, we designed a simple chemoenzymatic approach for the asymmetric synthesis of (R)-tebuconazole, which includes the biocatalytic resolution of racemic epoxy-precursor (2-tert-butyl-2-[2-(4-chlorophenyl)ethyl] oxirane, rac-1a) by Escherichia coli/Rpeh whole cells expressed epoxide hydrolase from Rhodotorula paludigensis (RpEH), followed by a one-step chemocatalytic synthesis of (R)-tebuconazole. It was observed that (S)-1a was preferentially hydrolyzed by E. coli/Rpeh, whereas (R)-1a was retained with a specific activity of 103.8 U/g wet cells and a moderate enantiomeric ratio (E value) of 13.4, which was remarkably improved to 43.8 after optimizing the reaction conditions. Additionally, a gram-scale resolution of 200 mM rac-1a was performed using 150 mg/mL E. coli/Rpeh wet cells, resulting in the retention of (R)-1a in a 97.0% ees, a 42.5% yields, and a 40.5 g/L/d space-time yield. Subsequently, the synthesis of highly optical purity (R)-tebuconazole (>99% ee) was easily achieved through the chemocatalytic ring-opening of the epoxy-precursor (R)-1a with 1,2,4-triazole. To elucidate insight into the enantioselectivity, molecular docking simulations revealed that the unique L-shaped substrate-binding pocket of RpEH plays a crucial role in the enantioselective recognition of bulky 2,2-disubstituted oxirane 1a.
Collapse
Affiliation(s)
- Die Hu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Xue-Wei Jia
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Jia-Lan Lu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Zhi-Yi Lu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Feng Xue
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No 1, Nanjing 210023, China
| | - Chao Huang
- Process Research Department, STA Pharmaceutical Co., Ltd, A WuXi AppTec Company, Changzhou 213164, China
| | - Qing-Gong Ren
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Tong Z, Meng D, Zhang W, Jin L, Yi X, Dong X, Sun M, Chu Y, Duan J. Mechanism Insights into the Enantioselective Bioactivity and Fumonisin Biosynthesis of Mefentrifluconazole to Fusarium verticillioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38607803 DOI: 10.1021/acs.jafc.4c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The occurrence of maize ear rot caused by Fusarium verticillioides (F. verticillioides) poses a threat to the yield and quality of maize. Mefentrifluconazole enantiomers appear to have strong stereoselective activity against F. verticillioides and cause differences in fumonisin production. We evaluated the stereoselective activity of mefentrifluconazole enantiomers by determining inhibition of the strain, hyphae, and conidia. Strain inhibition by R-(-)-mefentrifluconazole was 241 times higher than S-(+)-mefentrifluconazole and 376 times higher in conidia inhibition. For the mechanism of the enantioselective bioactivity, R-mefentrifluconazole had stronger binding to proteins than S-(+)-mefentrifluconazole. Under several concentration conditions, the fumonisin concentration was 1.3-24.9-fold higher in the R-(-)-mefentrifluconazole treatment than in the S-(+)-mefentrifluconazole treatment. The R-enantiomer stimulated fumonisin despite a higher bioactivity. As the incubation time increased, the stimulation of the enantiomers on fumonisin production decreased. R-(-)-Mefentrifluconazole stimulated higher fumonisin production in F. verticillioides at 25 °C compared to 30 °C. This study established a foundation for the development of high-efficiency and low-risk pesticides.
Collapse
Affiliation(s)
- Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - DanDan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - WenYu Zhang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Lei Jin
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - XiaoTong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - MingNa Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - JinSheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| |
Collapse
|
4
|
Gorshkov AP, Kusakin PG, Borisov YG, Tsyganova AV, Tsyganov VE. Effect of Triazole Fungicides Titul Duo and Vintage on the Development of Pea ( Pisum sativum L.) Symbiotic Nodules. Int J Mol Sci 2023; 24:8646. [PMID: 37240010 PMCID: PMC10217885 DOI: 10.3390/ijms24108646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Triazole fungicides are widely used in agricultural production for plant protection, including pea (Pisum sativum L.). The use of fungicides can negatively affect the legume-Rhizobium symbiosis. In this study, the effects of triazole fungicides Vintage and Titul Duo on nodule formation and, in particular, on nodule morphology, were studied. Both fungicides at the highest concentration decreased the nodule number and dry weight of the roots 20 days after inoculation. Transmission electron microscopy revealed the following ultrastructural changes in nodules: modifications in the cell walls (their clearing and thinning), thickening of the infection thread walls with the formation of outgrowths, accumulation of poly-β-hydroxybutyrates in bacteroids, expansion of the peribacteroid space, and fusion of symbiosomes. Fungicides Vintage and Titul Duo negatively affect the composition of cell walls, leading to a decrease in the activity of synthesis of cellulose microfibrils and an increase in the number of matrix polysaccharides of cell walls. The results obtained coincide well with the data of transcriptomic analysis, which revealed an increase in the expression levels of genes that control cell wall modification and defense reactions. The data obtained indicate the need for further research on the effects of pesticides on the legume-Rhizobium symbiosis in order to optimize their use.
Collapse
Affiliation(s)
- Artemii P. Gorshkov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Pyotr G. Kusakin
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Yaroslav G. Borisov
- Research Resource Centre “Molecular and Cell Technologies”, Saint Petersburg State University, Saint Petersburg 199034, Russia;
| | - Anna V. Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
- Saint Petersburg Scientific Center RAS, Universitetskaya Embankment 5, Saint Petersburg 199034, Russia
| |
Collapse
|
5
|
Xu X, Li J, Yang X, Zhang L, Wang S, Shen G, Hui B, Xiao J, Zhou C, Wang X, Zhao J, Xiang W. Epicoccum spp. Causing Maize Leaf Spot in Heilongjiang Province, China. PLANT DISEASE 2022; 106:3050-3060. [PMID: 35612576 DOI: 10.1094/pdis-09-21-1948-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maize leaf spot occurs worldwide and affects maize production. Maize can be infected by several pathogens causing leaf spot, such as Bipolaris zeicola, Bipolaris maydis, Curvularia species, Alternaria species, etc. In the current study, 30 Epicoccum isolates recovered from symptomatic maize leaves were identified based on morphological characteristics, pathogenicity, and multilocus sequence analyses of nuLSU, ITS, tub2, and rpb2. These maize isolates were grouped into five Epicoccum species, including E. nigrum, E. layuense, E. sorghinum, E. latusicollum, and E. pneumoniae. Pathogenicity tests showed that all five Epicoccum species could produce small ellipse- and spindle-shaped spots on maize leaves. The lesion center was grayish yellow to dark gray and surrounded by a chlorotic area. Furthermore, the Epicoccum isolates exhibited high pathogenicity to 20 main maize varieties of Heilongjiang Province but showed different sensitivities to the commonly used fungicides carbendazim and tebuconazole. In addition, these Epicoccum isolates showed different production capacity of pectinase, cellulase, protease, amylase, laccase, and gelatinase, but all showed high lipase activity. This is the first report globally of E. layuense, E. latusicollum, and E. pneumoniae as causal agents of maize leaf spot. E. pneumoniae was first reported as a plant pathogen.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jingjing Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xilang Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Li Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Guijin Shen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Bing Hui
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Changjian Zhou
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
6
|
Li C, Liu C. Enantioselective effect of chiral fungicide prothioconazole on Fusarium graminearum: Fungicidal activity and DON biosynthesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119553. [PMID: 35640724 DOI: 10.1016/j.envpol.2022.119553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Prothioconazole, a chiral triazole fungicide, is widely used to control Fusarium head blight (FHB) of wheat. Fusarium graminearum (F. graminearum), as the main pathogen of FHB, can produce many secondary metabolites including deoxynivalenol (DON), which threatens the health of humans and animals. However, some fungicides may stimulate F. graminearum to synthesize more DON under certain conditions. Until now, the fungicidal activity and enantioselective effect of prothioconazole enantiomers on DON production, transcriptome and metabolome of F. graminearum were unclear. The fungicidal activity of R-(-)-prothioconazole against F. graminearum was 9.12-17.73 times higher than that of S-(+)-prothioconazole under all conditions. Prothioconazole enantiomers can induce F. graminearum to synthesize more DON under 0.99 water activity (aw) and 30 °C, especially R-(-)-prothioconazole. The expression levels of TRI6, TRI10 and TRI101 under R-(-)-prothioconazole treatment were significantly higher than those under S-(+)-prothioconazole treatment. Most genes in glycolysis, pyruvate metabolism, the target of rapamycin (TOR) signaling transduction pathway and the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling transduction pathway showed higher expression levels under R-(-)-prothioconazole treatment than uner S-(+)-prothioconazole treatment and the control. The peroxisome pathway displayed higher transcriptional activity under S-(+)-prothioconazole treatment compared with R-(-)-prothioconazole and the control. Based on metabolomic data, R-(-)-prothioconazole can significantly influence phenylalanine metabolism, and no significantly enriched pathway was found under S-(+)-prothioconazole treatment. These results are helpful to understand the risk of prothioconazole enantiomers on DON production of F. graminearum and uncover the relevant underlying mechanisms of prothioconazole enantiomers.
Collapse
Affiliation(s)
- Chaofeng Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China.
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Cheng S, Feng X, Liu G, Zhao N, Liu J, Zhang Z, Yang N, Zhou L, Pang M, Tang B, Dong J, Zhao B, Liu Y. Natural Occurrence of Mycotoxins in Maize in North China. Toxins (Basel) 2022; 14:toxins14080521. [PMID: 36006182 PMCID: PMC9414867 DOI: 10.3390/toxins14080521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Mycotoxins seriously threaten the quality of maize seriously around the world. A total of 426 samples of maize kernel from northeast and northwest China were analyzed in this study. Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was performed to analyze the mycotoxin contamination of maize samples. The results showed that it was contaminated by mycotoxins in maize. The average contamination levels of fumonisins, deoxynivalenol, aflatoxins, zearalenone, ochratoxin A, T-2 and HT-2 were 937, 431, 22, 27, 2 and 12 μg/kg, respectively. Concentration of mycotoxins in some samples exceeded their limit, but most were still at safe levels. The contamination level of FBs and DON were most significative. The proportion of mycotoxins exceeding the maximum limit standard was in the following order: 8.0%, 8.0%, 7.0%, 1.6%, 1.4% and 0.0%. The contamination of mycotoxins in maize varies from region to region.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jingao Dong
- Correspondence: (J.D.); (B.Z.); (Y.L.); Tel.: +86-312-752-8166 (J.D.); +86-312-752-8567 (B.Z.); +86-312-752-8173 (Y.L.)
| | - Bin Zhao
- Correspondence: (J.D.); (B.Z.); (Y.L.); Tel.: +86-312-752-8166 (J.D.); +86-312-752-8567 (B.Z.); +86-312-752-8173 (Y.L.)
| | - Yingchao Liu
- Correspondence: (J.D.); (B.Z.); (Y.L.); Tel.: +86-312-752-8166 (J.D.); +86-312-752-8567 (B.Z.); +86-312-752-8173 (Y.L.)
| |
Collapse
|
8
|
Li C, Fan S, Zhang Y, Zhang X, Luo J, Liu C. Toxicity, bioactivity of triazole fungicide metconazole and its effect on mycotoxin production by Fusarium verticillioides: New perspective from an enantiomeric level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154432. [PMID: 35278556 DOI: 10.1016/j.scitotenv.2022.154432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The chiral triazole fungicide metconazole has four stereoisomers, is a broad-spectrum fungicide and is widely used for controlling Fusarium head blight caused by Fusarium species. In this study, systemic assessments of metconazole stereoisomers were performed, including stereoselective toxicity toward the aquatic organism Daphnia magna, fungicidal activity and effects on fumonisin production by the pathogen Fusarium verticillioides (F. verticillioides) in relation to different conditions. The toxicity of metconazole was enantioselective, and there was a 2.1-2.9-fold difference. The activities of superoxide dismutase (SOD) and catalase (CAT) increased and decreased, respectively, after treatment with metconazole stereoisomers, and the differences were observed among the stereoisomers. Among the four stereoisomers, (1S,5R)-metconazole showed the highest fungicidal activity under all assayed conditions, and the differences ranged from 4.4 to 45.2 times. Moreover, metconazole stereoisomers can stereoselectively affect on fumonisin B1 production by F. verticillioides and abiotic factors, such as water activity and temperature, play an important role. Our study provides new insight into metconazole at the stereoisomeric level, including its toxicity, bioactivity, and effect on Fusarium species producing mycotoxins.
Collapse
Affiliation(s)
- Chaofeng Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Shuai Fan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Yirong Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Xiangyu Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Jianjun Luo
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
9
|
Blandino M, Scarpino V, Testa G, Vanara F, Reyneri A. The Effect of Foliar Fungicide and Insecticide Application on the Contamination of Fumonisins, Moniliformin and Deoxynivalenol in Maize Used for Food Purposes. Toxins (Basel) 2022; 14:422. [PMID: 35878160 PMCID: PMC9316389 DOI: 10.3390/toxins14070422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/11/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
The fungal ear rot of maize cultivated in temperate areas is mainly due to the Fusarium species. The use of insecticides against European Corn Borer (ECB) reduces the severity of fungal ear rot as well as the fumonisin (FB) and moniliformin (MON) levels in maize kernels at harvest, which in turn results in a lowering of their effect on deoxynivalenol (DON) control. However, the direct fungicidal control of ear rot has rarely been implemented for maize, and the first studies reported conflicting results on the reduction of mycotoxins. In the present experiment, field trials were carried out in North Italy over three growing seasons to study the effect of fungicide application timings on maize to control mycotoxins, considering the interaction of the application with the insecticide treatment, according to a full factorial split plot design. The mycotoxin content was determined through LC-MS/MS analysis. The field trials showed a significant reduction in ECB severity (75%), fungal ear rot severity (68%), Fusarium Liseola section infection (46%), FBs (75%) and MON (79%) as a result of the insecticide application for all the years, while the DON content increased by 60%. On the other hand, a fungicide application alone or applied in plots protected by an insecticide was never effective for the fungal symptoms, infection or mycotoxin content. The results confirm that a correct insecticide application to control ECB damage is the most effective agrochemical solution for the control of fungal ear rot, FBs and MON.
Collapse
Affiliation(s)
- Massimo Blandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, Italy; (V.S.); (G.T.); (F.V.); (A.R.)
| | | | | | | | | |
Collapse
|
10
|
A review of mycotoxin biosynthetic pathways: associated genes and their expressions under the influence of climatic factors. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Li C, Fan S, Wen Y, Tan Z, Liu C. Enantioselective Effect of Flutriafol on Growth, Deoxynivalenol Production, and TRI Gene Transcript Levels in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1684-1692. [PMID: 33522237 DOI: 10.1021/acs.jafc.0c06800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, deoxynivalenol (DON) has frequently been detected in wheat grains and their products. The enantioselective impact of flutriafol on the growth and DON biosynthesis of Fusarium graminearum was investigated in relation to water activity (αw, 0.97 and 0.99) and temperature (20, 25, and 30 °C) on the wheat-based medium. R-(-)-flutriafol exhibited higher bioactivity than S-(+)-flutriafol and Rac-flutriafol under the above conditions. Flutriafol enantiomers reduced or stimulated DON biosynthesis depending on αw. DON levels were negligible after 14 or 7 days of incubation times under 0.97 and 0.99 aw, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed that the expression levels of trichothecene biosynthetic (TRI) genes of F. graminearum under 0.97 aw were significantly higher than those under 0.99 aw. In addition, R-(-)-flutriafol can induce more TRI gene expression than S-(+)-flutriafol. Taken together, this study indicated that aw and temperature play important roles in regulating DON biosynthesis in F. graminearum with flutriafol enantiomers.
Collapse
Affiliation(s)
- Chaofeng Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Shuai Fan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Yan Wen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Zhenchao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| |
Collapse
|
12
|
Single-chain variable fragment antibody-based immunochromatographic strip for rapid detection of fumonisin B1 in maize samples. Food Chem 2020; 319:126546. [DOI: 10.1016/j.foodchem.2020.126546] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/18/2019] [Accepted: 03/01/2020] [Indexed: 01/07/2023]
|
13
|
Three-Locus Sequence Identification and Differential Tebuconazole Sensitivity Suggest Novel Fusarium equiseti Haplotype from Trinidad. Pathogens 2020; 9:pathogens9030175. [PMID: 32121520 PMCID: PMC7157627 DOI: 10.3390/pathogens9030175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
The Fusarium incarnatum-equiseti species complex (FIESC) consists of 33 phylogenetic species according to multi-locus sequence typing (MLST) and Genealogical Concordance Phylogenetic Species Recognition (GCPSR). A multi-locus dataset consisting of nucleotide sequences of the translation elongation factor (EF-1α), calmodulin (CAM), partial RNA polymerase largest subunit (RPB1), and partial RNA polymerase second largest subunit (RPB2), was generated to distinguish among phylogenetic species within the FIESC isolates infecting bell pepper in Trinidad. Three phylogenetic species belonged to the Incarnatum clade (FIESC-15, FIESC-16, and FIESC-26), and one species belonged to the Equiseti clade (FIESC-14). Specific MLST types were sensitive to 10 µg/mL of tebuconazole fungicide as a discriminatory dose. The EC50 values were significantly different among the four MLST groups, which were separated into two homogeneous groups: FIESC-26a and FIESC-14a, demonstrating the “sensitive” azole phenotype and FIESC-15a and FIESC-16a as the “less sensitive” azole phenotype. CYP51C sequences of the Trinidad isolates, although under positive selection, were without any signatures of recombination, were highly conserved, and were not correlated with these azole phenotypes. CYP51C sequences were unable to resolve the FIESC isolates as phylogenetic inference indicated polytomic branching for these sequences. This data is important to different research communities, including those studying Fusarium phytopathology, mycotoxins, and public health impacts.
Collapse
|