1
|
Bettelli MA, Perdigón LA, Zhao L, Pereira PFM, Jiménez-Quero A, Capezza AJ, Prade T, Johansson E, Olsson RT, Hedenqvist MS, Sabino MA. Biodegradation, Bioassimilation and Recycling Properties of Wheat Gluten Foams. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2025; 5:805-821. [PMID: 40405868 PMCID: PMC12093299 DOI: 10.1021/acsagscitech.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 05/26/2025]
Abstract
Protein-based foams are potential sustainable alternatives to petroleum-based polymer foams in e.g. single-use products. In this work, the biodegradation, bioassimilation, and recycling properties of glycerol-plasticized wheat gluten foams (using a foaming agent and gallic acid, citric acid, or genipin) were determined. The degradation was investigated at different pH levels in soil and high humidity. The fastest degradation occurred in an aqueous alkaline condition with complete degradation within 5 weeks. The foams exhibited excellent bioassimilation, comparable to or better than industrial fertilizers, particularly in promoting coriander plant growth. The additives provided specific effects: gallic acid offered antifungal properties, citric acid provided the fastest degradation at high pH, and genipin contributed with cross-linking. All three additives also contributed to antioxidant properties. Dense β-sheet protein structures degraded more slowly than disordered/α-helix structures. WG foams showed only a small global warming potential and lower fossil carbon emissions than synthetic foams on a mass basis, as illustrated with a nitrile-butadiene rubber (NBR) foam. Unlike NBR, the protein foams could be recycled into films, offering an alternative to immediate composting.
Collapse
Affiliation(s)
- Mercedes A. Bettelli
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Leonardo A. Perdigón
- Department
of Chemistry, B5IDA Research Group, Simon
Bolivar University, Caracas 89000, Venezuela
| | - Luyao Zhao
- Department
of Industrial Biotechnology, School of Engineering Sciences in Chemistry,
Biotechnology and Health, KTH Royal Institute
of Technology, 100 44 Stockholm, Sweden
| | - Pamela F. M. Pereira
- Department
of LIFE Sciences, Industrial Biotechnology Division, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Amparo Jiménez-Quero
- Department
of LIFE Sciences, Industrial Biotechnology Division, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Antonio J. Capezza
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Thomas Prade
- Department
of Biosystems and Technology, Swedish University
of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Eva Johansson
- Department
of Plant Breeding, The Swedish University
of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Richard T. Olsson
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Mikael S. Hedenqvist
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Marcos A. Sabino
- Department
of Chemistry, B5IDA Research Group, Simon
Bolivar University, Caracas 89000, Venezuela
| |
Collapse
|
2
|
Yang R, Yu L, Xie X, Chen G, Wen L. Anti-inflammatory metabolites from the mangrove endophytic fungus Diaporthe pseudooculi HHUF 30617. Nat Prod Res 2025:1-6. [PMID: 40366890 DOI: 10.1080/14786419.2025.2503508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 04/20/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Certain mangrove endophytic fungi have unique physiological mechanisms, such as anti-inflammatory properties. A new polyketone, namely N-acetoxyethyl-3-(3,5-dimethyl-1,3-heptadienyl)-5-chloro-7-methyl-7-acetoxy-6,8-(2H,7H)-isoquinolinedione (1), and 17 known compounds (2-18) were isolated from the mangrove endophytic fungus Diaporthe pseudooculi HHUF 30617. The structure of the new compound was elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray ionisation mass spectroscopy (HRESI-MS). The anti-inflammatory activities of the compounds were evaluated using the zebrafish migratory fluorescent cell count assay. The results suggest the potential of the above compounds for treating inflammation. These findings aid the development of natural marine products based on mangrove endophytic fungal metabolites to counter conditions such as copper toxicity.
Collapse
Affiliation(s)
- Runxin Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Leshi Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Xiaoting Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| |
Collapse
|
3
|
Hou C, Wang Y, Meng X, Lu L, Fu P, Zhu W, Wang Y. Bioactive hydrogenated azaphilones from acid-tolerant fungus Penicillium purpureum OUCMDZ-019. J Antibiot (Tokyo) 2025; 78:281-287. [PMID: 40128317 DOI: 10.1038/s41429-025-00818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/26/2025]
Abstract
Two new hydrogenated azaphilones (1 and 2), together with the known azaphilone (3) were isolated from the red soil-derived acid-tolerant fungus Penicillium purpureum OUCMDZ-019 by OSMAC (one strain many compounds) strategy. Their structures were determined by nuclear magnetic resonance (NMR) spectroscopy analysis and electronic circular dichroism (ECD) calculations. Compound 1 was the first reported azaphilone that salified with pyridine and chlorination occurred at C-1, and it exhibited potential inhibitory activity on melanin production as tyrosinase inhibitor in vivo. Furthermore, (+)-mitorubrinol acetate (3) showed significantly inhibitory activity against H1N1 with IC50 values of 58.6 μM (ribavirin, IC50 85.0 μM) as the first report.
Collapse
Affiliation(s)
- Chengfeng Hou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yuqing Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiangling Meng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ling Lu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Peng Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Centre, Qingdao, China.
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
| | - Yi Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Centre, Qingdao, China.
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
| |
Collapse
|
4
|
Li DC, Wei MW, Yang ZY, Guo ZJ, Liao XJ, Xu SH, Zhao BX. A New Azaphilone From the Marine Sponge-Associated Fungus Botryosporium pulchrum. Chem Biodivers 2025; 22:e202402884. [PMID: 39638767 DOI: 10.1002/cbdv.202402884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
A new azaphilone, botryazaphilone (1), the first example of azaphilone featuring a 6/6/5/5 tetracyclic system, together with two known ones, chermesinone A (2) and perangustol B (3), had been obtained from the marine sponge-associated fungus Botryosporium pulchrum. The structure of 1 was elucidated through the analysis of spectroscopic data, whereas its absolute configuration was determined via single-crystal x-ray diffraction. It is the first report of the secondary metabolites isolated from the genus Botryosporium. Furthermore, all the compounds showed potential anti-inflammatory activities on the model of CuSO4-induced transgenic zebrafish.
Collapse
Affiliation(s)
- Dai-Chun Li
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Mei-Wen Wei
- College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Zhen-Yu Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Ze-Jie Guo
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Xiao-Jian Liao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Shi-Hai Xu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Bing-Xin Zhao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Yang F, Wang LL, Liu YH, Wu KX, Chen ZS, Ji K. Brønsted acid-catalyzed two-component tandem condensation and cycloisomerization to 6(2 H)-isoquinolinones. RSC Adv 2025; 15:8913-8917. [PMID: 40129638 PMCID: PMC11931502 DOI: 10.1039/d5ra01267h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
An attractive Brønsted acid-catalyzed two-component reaction of 2-alkynyl-4-hydroxybenzaldehydes 1 and primary amines 2 to various 6(2H)-isoquinolinones 3 has been developed. This catalytic system realized an efficient tandem condensation and cycloisomerization reaction to 6(2H)-isoquinolinones 3 in good to excellent yields via a one-pot synthesis, in which two different kinds of C-N bonds were constructed in a straightforward manner. Remarkably, the reaction tolerated various aliphatic, aryl-substituted amines, including chiral amino alcohols and amino acids. The practicality of this approach rendered it a viable alternative for the construction of various 6(2H)-isoquinolinones.
Collapse
Affiliation(s)
- Fang Yang
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology 3 Taicheng Road Yangling 712100 Shaanxi P. R. China
| | - Lin-Lin Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology 3 Taicheng Road Yangling 712100 Shaanxi P. R. China
| | - Yu-Hua Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology 3 Taicheng Road Yangling 712100 Shaanxi P. R. China
| | - Ke-Xin Wu
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology 3 Taicheng Road Yangling 712100 Shaanxi P. R. China
| | - Zi-Sheng Chen
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology 3 Taicheng Road Yangling 712100 Shaanxi P. R. China
| | - Kegong Ji
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology 3 Taicheng Road Yangling 712100 Shaanxi P. R. China
| |
Collapse
|
6
|
Martínez H, Santos M, Pedraza L, Testera AM. Advanced Technologies for Large Scale Supply of Marine Drugs. Mar Drugs 2025; 23:69. [PMID: 39997193 PMCID: PMC11857447 DOI: 10.3390/md23020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Marine organisms represent a source of unique chemical entities with valuable biomedical potentialities, broad diversity, and complexity. It is essential to ensure a reliable and sustainable supply of marine natural products (MNPs) for their translation into commercial drugs and other valuable products. From a structural point of view and with few exceptions, MNPs of pharmaceutical importance derive from the so-called secondary metabolism of marine organisms. When production strategies rely on marine macroorganisms, harvesting or culturing coupled with extraction procedures frequently remain the only alternative to producing these compounds on an industrial scale. Their supply can often be implemented with laboratory scale cultures for bacterial, fungal, or microalgal sources. However, a diverse approach, combining traditional methods with modern synthetic biology and biosynthesis strategies, must be considered for invertebrate MNPs, as they are usually naturally accumulated in only very small quantities. This review offers a comprehensive examination of various production strategies for MNPs, addressing the challenges related to supply, synthesis, and scalability. It also underscores recent biotechnological advancements that are likely to transform the current industrial-scale manufacturing methods for pharmaceuticals derived from marine sources.
Collapse
Affiliation(s)
- Henar Martínez
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Computational Chemistry Group, Department of Physical Chemistry and Inorganic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain
| | - Mercedes Santos
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Lucía Pedraza
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain;
| | - Ana M. Testera
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| |
Collapse
|
7
|
Saetang P, Rukachaisirikul V, Saithong S, Phongpaichit S, Preedanon S, Sakayaroj J. Benzaldehyde and azaphilone derivatives from the marine-derived fungus Penicillium sclerotiorum PSU-AMF89. Nat Prod Res 2024:1-8. [PMID: 39722600 DOI: 10.1080/14786419.2024.2442101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/12/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Two new compounds including one benzaldehyde (1) and one azaphilone (2) were isolated from the marine-derived fungus Penicillium sclerotiorum PSU-AMF89 together with nine known compounds (3-11). Their structures were determined by spectroscopic evidences. The absolute configuration of 2 was established by comparison of the ECD data with those of the previously reported data of compound 7 as well as the biosynthetic consideration. Compound 1 displayed potent cytotoxic activity against MCF-7 cells with an IC50 value of 9 µM, compared with the standard drugs, tamoxifen and doxorubicin, whereas compounds 3 and 8 were moderately active against Cryptococcus neoformans and methicillin-resistant Staphylococcus aureus, respectively, with equal MIC values of 64 µg/mL. In addition, they were non-cytotoxic to noncancerous Vero cells.
Collapse
Affiliation(s)
- Praphatsorn Saetang
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Saowanit Saithong
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Medical Science Research and Innovation Institute, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Souwalak Phongpaichit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sita Preedanon
- National Biobank of Thailand (NBT), National Science and Technology Development Agency, Thailand Science Park, Klong Luang, Pathumthani, Thailand
| | - Jariya Sakayaroj
- School of Science, Walailak University, Thasala, Nakhonsithammarat, Thailand
| |
Collapse
|
8
|
Huang X, Li D, Long B, Li H, Li J, Wang W, Xu K, Yu X. Activation of a Silent Gene Cluster from the Endophytic Fungus Talaromyces sp. Unearths Cryptic Azaphilone Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15801-15810. [PMID: 38962874 DOI: 10.1021/acs.jafc.4c03162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Fungal azaphilones have attracted widespread attention due to their significant potential as sources of food pigments and pharmaceuticals. Genome mining and gene cluster activation represent powerful tools and strategies for discovering novel natural products and bioactive molecules. Here, a putative azaphilone biosynthetic gene cluster lut from the endophytic fungus Talaromyces sp. was identified through genome mining. By overexpressing the pathway-specific transcription factor LutB, five new sclerotiorin-type azaphilones (1, 6, 8, and 10-11) together with seven known analogues (2-5, 7, 9, 12) were successfully produced. Compounds 8 and 9 exhibited antibacterial activity against Bacillus subtilis with MIC values of 64 and 16 μg/mL, respectively. Compound 11 showed cytotoxic activity against HCT116 and GES-1 with IC50 values of 10.9 and 4.9 μM, respectively, while 1, 4, 5, and 7-10 showed no obvious cytotoxic activity. Gene inactivation experiments confirmed the role of the lut cluster in the production of compounds 1-12. Subsequent feeding experiments unveiled the novel functional diversity of the dual megasynthase system. Furthermore, a LutC-LutD binary oxidoreductase system was discovered, and in combination with DFT calculations, the basic biosynthetic pathway of the sclerotiorin-type azaphilones was characterized. This study provided a good example for the discovery of new azaphilones and further uncovered the biosynthesis of these compounds.
Collapse
Affiliation(s)
- Xiaoling Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Dan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Bi Long
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Haidi Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Jing Li
- Xiangya Hospital of Central South University, Central South University, Changsha, Hunan 410008, China
| | - Wenxuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Kangping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Xia Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| |
Collapse
|
9
|
Jahan I, Wang Y, Li P, Hussain S, Song J, Yan J. Comprehensive Analysis of Penicillium Sclerotiorum: Biology, Secondary Metabolites, and Bioactive Compound Potential─A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9555-9566. [PMID: 38648511 DOI: 10.1021/acs.jafc.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The filamentous fungus Penicillium sclerotiorum is significant in ecological and industrial domains due to its vast supply of secondary metabolites that have a diverse array of biological functions. We have gathered the metabolic potential and biological activities associated with P. sclerotiorum metabolites of various structures, based on extensive research of the latest literature. The review incorporated literature spanning from 2000 to 2023, drawing from reputable databases including Google Scholar, ScienceDirect, Scopus, and PubMed, among others. Ranging from azaphilones, meroterpenoids, polyketides, and peptides group exhibits fascinating potential pharmacological activities such as antimicrobial, anti-inflammatory, and antitumor effects, holding promise in pharmaceutical and industrial sectors. Additionally, P. sclerotiorum showcases biotechnological potential through the production of enzymes like β-xylosidases, β-d-glucosidase, and xylanases, pivotal in various industrial processes. This review underscores the need for further exploration into its genetic foundations and cultivation conditions to optimize the yield of valuable compounds and enzymes, highlighting the unexplored potential of P. sclerotiorum in diverse applications across industries.
Collapse
Affiliation(s)
- Israt Jahan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yihan Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ping Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Sarfaraz Hussain
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Jiayi Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jian Yan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| |
Collapse
|
10
|
Huang L, Li Y, Pang J, Lv L, Zhou J, Liang L, He X, Li J, Xu W, Yang R. Isolation and Characterization of Antimicrobial Metabolites from the Sophora tonkinensis-Associated Fungus Penicillium sp. GDGJ-N37. Molecules 2024; 29:348. [PMID: 38257261 PMCID: PMC10818566 DOI: 10.3390/molecules29020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Chemical investigation of Penicillium sp. GDGJ-N37, a Sophora tonkinensis-associated fungus, yielded two new azaphilone derivatives, N-isoamylsclerotiorinamine (1) and 7-methoxyl-N-isoamylsclerotiorinamine (2), and four known azaphilones (3-6), together with two new chromone derivatives, penithochromones X and Y (7 and 8). Their structures were elucidated based on spectroscopic data, CD spectrum, and semi-synthesis. Sclerotioramine (3) showed significant antibacterial activities against B. subtilis and S. dysentery, and it also showed most potent anti-plant pathogenic fungi activities against P. theae, C. miyabeanus, and E. turcicum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weifeng Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (L.H.); (Y.L.); (J.P.); (L.L.); (J.Z.); (L.L.); (X.H.); (J.L.)
| | - Ruiyun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (L.H.); (Y.L.); (J.P.); (L.L.); (J.Z.); (L.L.); (X.H.); (J.L.)
| |
Collapse
|
11
|
Chiang CH, Wymore T, Rodríguez Benítez A, Hussain A, Smith JL, Brooks CL, Narayan ARH. Deciphering the evolution of flavin-dependent monooxygenase stereoselectivity using ancestral sequence reconstruction. Proc Natl Acad Sci U S A 2023; 120:e2218248120. [PMID: 37014851 PMCID: PMC10104550 DOI: 10.1073/pnas.2218248120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Controlling the selectivity of a reaction is critical for target-oriented synthesis. Accessing complementary selectivity profiles enables divergent synthetic strategies, but is challenging to achieve in biocatalytic reactions given enzymes' innate preferences of a single selectivity. Thus, it is critical to understand the structural features that control selectivity in biocatalytic reactions to achieve tunable selectivity. Here, we investigate the structural features that control the stereoselectivity in an oxidative dearomatization reaction that is key to making azaphilone natural products. Crystal structures of enantiocomplementary biocatalysts guided the development of multiple hypotheses centered on the structural features that control the stereochemical outcome of the reaction; however, in many cases, direct substitutions of active site residues in natural proteins led to inactive enzymes. Ancestral sequence reconstruction (ASR) and resurrection were employed as an alternative strategy to probe the impact of each residue on the stereochemical outcome of the dearomatization reaction. These studies suggest that two mechanisms are active in controlling the stereochemical outcome of the oxidative dearomatization reaction: one involving multiple active site residues in AzaH and the other dominated by a single Phe to Tyr switch in TropB and AfoD. Moreover, this study suggests that the flavin-dependent monooxygenases (FDMOs) adopt simple and flexible strategies to control stereoselectivity, which has led to stereocomplementary azaphilone natural products produced by fungi. This paradigm of combining ASR and resurrection with mutational and computational studies showcases sets of tools for understanding enzyme mechanisms and provides a solid foundation for future protein engineering efforts.
Collapse
Affiliation(s)
- Chang-Hwa Chiang
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Troy Wymore
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
| | - Attabey Rodríguez Benítez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Azam Hussain
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI48109
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI48109
| | - Alison R. H. Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
12
|
Zhang X, Hu Y, Yang T, Qian X, Hu W, Li G. Penazaphilones J–L, Three New Hydrophilic Azaphilone Pigments from Penicillium sclerotiorum cib-411 and Their Anti-Inflammatory Activity. Molecules 2023; 28:molecules28073146. [PMID: 37049911 PMCID: PMC10095951 DOI: 10.3390/molecules28073146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Penazaphilones J–L (1–3), three new hydrophilic azaphilone pigments, as well as six known compounds, were discovered from the filamentous fungus Penicillium sclerotiorum cib-411. Compounds 1–3 were structurally elucidated by the detailed interpretation of their 1D and 2D NMR spectroscopic data. Compound 1 is an unprecedented hybrid of an azaphilone and a glycerophosphate choline. Compounds 2 and 3 each contain an intact amino acid moiety. The bioassay showed that compound 3 exhibited significant anti-inflammatory activity. Concretely, compound 3 significantly suppressed the NO production, the expression levels of COX-2, IL-6, IL-1β, and iNOS mRNA in LPS-stimulated RAW264.7 cells. Moreover, treatment of compound 3 prevented the translocation of NF-κB through inhibiting the phosphorylation of PI3K, PDK1, Akt, and GSK-3β. Thus, the inhibition of compound 3 against LPS-induced inflammation should rely on its inactivation on NF-κB.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tao Yang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xueqing Qian
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Guoyou Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
13
|
Azaphilones produced by Penicillium maximae with their cell death-inducing activity on Adriamycin-treated cancer cell. Genes Environ 2023; 45:5. [PMID: 36658662 PMCID: PMC9850696 DOI: 10.1186/s41021-023-00261-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Heat shock proteins (Hsps) are overexpressed in several tumors and contribute to cell proliferation, metastasis, and anticancer drug resistance. Therefore, Hsp inhibitors have enhanced cytotoxicity as chemotherapeutic agents and may be effective with a reduced dosage for tumor therapy to avoid side effects. RESULTS Four new azaphilones, maximazaphilones I-IV (1-4), and three known compounds (5-7) have been isolated from the airborne-derived fungus Penicillium maximae. Inhibitory effects of isolated compounds against induction of Hsp105 were evaluated by the luciferase assay system using Hsp105 promoter. In this assay, 2-4, 6, and 7 significantly inhibited hsp105 promoter activity without cytotoxicity. In addition, all isolated compounds except for 5 significantly induced the death of Adriamycin (ADR)-treated HeLa cells. Interestingly, 1-4, 6, and 7 didn't show anti-proliferative and cell death-inducing activity without ADR. CONCLUSION This study revealed the chemical structures of maximazaphilones I-IV (1-4) and the potency of azaphilones may be useful for cancer treatment and reducing the dose of anticancer agents. In addition, one of the mechanisms of cell death-inducing activity for 2-4, 6, and 7 was suggested to be inhibitory effects of Hsp105 expression.
Collapse
|
14
|
Lu T, Liu Y, Zhou L, Liao Q, Nie Y, Wang X, Lei X, Hong P, Feng Y, Hu X, Zhang Y. The screening for marine fungal strains with high potential in alkaloids production by in situ colony assay and LC-MS/MS based secondary metabolic profiling. Front Microbiol 2023; 14:1144328. [PMID: 37206330 PMCID: PMC10191116 DOI: 10.3389/fmicb.2023.1144328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Background Alkaloids are the second primary class of secondary metabolites (SMs) from marine organisms, most of which have antioxidant, antitumor, antibacterial, anti-inflammatory, and other activities. However, the SMs obtained by traditional isolation strategies have drawbacks such as highly reduplication and weak bioactivity. Therefore, it is significantly important to establish an efficient strategy for screening strains and mining novel compounds. Methods In this study, we utilized in situ colony assay combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the strain with high potential in alkaloids production. The strain was identified by genetic marker genes and morphological analysis. The secondary metabolites from the strain were isolated by the combine use of vacuum liquid chromatography (VLC), ODS column chromatography, and Sephadex LH-20. Their structures were elucidated by 1D/2D NMR, HR-ESI-MS, and other spectroscopic technologies. Finally, these compounds bioactivity were assay, including anti-inflammatory and anti-β aggregation. Results Eighteen marine fungi were preliminarily screened for alkaloids production by in situ colony assay using Dragendorff reagent as dye, and nine of them turned orange, which indicated abundant alkaloids. By thin-layer chromatography (TLC), LC-MS/MS, and multiple approaches assisted Feature-Based Molecular Networking (FBMN) analysis of fermentation extracts, a strain ACD-5 (Penicillium mallochii with GenBank accession number OM368350) from sea cucumber gut was selected for its diverse alkaloids profiles especially azaphilones. In bioassays, the crude extracts of ACD-5 in Czapek-dox broth and brown rice medium showed moderate antioxidant, acetylcholinesterase inhibitory, anti-neuroinflammatory, and anti-β aggregation activities. Three chlorinated azaphilone alkaloids, compounds 1-3 (sclerotioramine, isochromophilone VI, and isochromophilone IX, respectively), were isolated from the fermentation products of ACD-5 in brown rice medium guided by bioactivities and mass spectrometry analysis. Compound 1 had shown remarkable anti-neuroinflammatory activity in liposaccharide induced BV-2 cells. Conclusion In summary, in situ colony screening together with LC-MS/MS, multi-approach assisted FBMN can act as an efficient screening method for strains with potential in alkaloids production.
Collapse
Affiliation(s)
- Tiantian Lu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yayue Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingnan Liao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yingying Nie
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xingyuan Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoling Lei
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Pengzhi Hong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yan Feng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xueqiong Hu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Yi Zhang, ,
| |
Collapse
|
15
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
16
|
Li J, Li Z, Chen T, Ye G, Qiu L, Long Y. New azaphilones from mangrove endophytic fungus Penicillium sclerotiorin SCNU-F0040. Nat Prod Res 2023; 37:296-304. [PMID: 34498957 DOI: 10.1080/14786419.2021.1959580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two new sclerotioramines (1 and 2) and a new natural product of sclerotioramine analog (3), together with seven known compounds have been isolated from the mangrove endophytic fungus Penicillium sclerotiorin SCNU-F0040. Their structures were identified based on the 1 D, 2 D NMR and HRESIM spectra. The absolute configurations of new compounds were deduced by specific rotation data and electronic circular dichroism spectra. All the isolated new compounds were tested on anti-diabetes activity by using a-glucosidase inhibition assay and anti-inflammatory activity by using cyclooxygenase inhibition assay, respectively. Compounds 1 and 2 have a-glucosidase inhibition activity with IC50 values of 102.3 and 217.5 μM. Compound 2 shows a moderate cyclooxygenase-2 inhibitory activity with an IC50 value of 47.8 μM.
Collapse
Affiliation(s)
- Jialin Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| | - Zixuan Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| | - Tao Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| | - Geting Ye
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| | - Liyu Qiu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| | - Yuhua Long
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| |
Collapse
|
17
|
Liao LX, Huang ZD, Wei FT, Wang WJ, Yang XL. New chromone analog and pyrrole alkaloid produced by Penicillium sclerotiorum and their antibacterial activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 25:1-6. [PMID: 35727201 DOI: 10.1080/10286020.2022.2084585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
A new chromone analog (1) and a new pyrrole alkaloid (2), together with four known compounds, were isolated from the endophytic fungus Penicillium sclerotiorum MPT-250 obtained from the stems of Taxus wallichiana var. chinensis (Pilger) Florin. The structural elucidation of these metabolites was performed by high-resolution mass spectrometry and NMR spectroscopy. Compounds 1 and 5 exhibited significant antibacterial activity against carbapenems-resistant Pseudomonas aeruginosa and multidrug-resistant Enterococcus faecium with an minimum inhibitory concentration (MIC) value of 3.13 μg/ml respectively.
Collapse
Affiliation(s)
- Liang-Xiu Liao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ze-Diao Huang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Fu-Ting Wei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Jing Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Long Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
18
|
Azaphilone derivatives with anti-inflammatory activity from the mangrove endophytic fungus Penicillium sclerotiorum ZJHJJ-18. Bioorg Chem 2022; 122:105721. [PMID: 35305481 DOI: 10.1016/j.bioorg.2022.105721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023]
Abstract
Nine undescribed azaphilone derivatives, sclerazaphilones A-H (1-9), and three known analogues (10-12), were obtained and identified from the fermented rice cultures of a mangrove endophytic fungus Penicillium sclerotiorum ZJHJJ-18. 1D and 2D NMR, HRESIMS and spectral data indicated the chemical structures of 1-9, and their absolute configurations were assigned by experimental and computational analyses of electronic circular dichroism (ECD) spectra, and application of the chemical transformations. Compounds 1-4 were the first reported N-containing azaphilone derivatives with 5/6 dicyclic core. The bioassay results showed that compounds 3-5 exhibited effective inhibitory effects on the nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells with IC50 values in the range of 6.30-9.45 μM. Moreover, a molecular docking study was conducted to investigate the probable binding interaction of 3-5 with inducible nitric oxide synthase (iNOS).
Collapse
|
19
|
Deng M, Chen X, Qiao Y, Shi Z, Wang J, Zhu H, Gu L, Qi C, Zhang Y. Isolation, absolute configurations and bioactivities of pestaphilones A-I: Undescribed methylated side chain containing-azaphilones from Pestalotiopsis oxyanthi. PHYTOCHEMISTRY 2022; 194:113045. [PMID: 34875525 DOI: 10.1016/j.phytochem.2021.113045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Nine undescribed side chain containing azaphilones, pestaphilones A-I, were isolated from the Anoectochilus roxburghii endophytic fungus Pestalotiopsis oxyanthi. The structures of these isolates were identified by spectroscopic data, electronic circular dichroism (ECD) calculations and comparisons, quantum-chemical 13C NMR calculations with DP4+ probability analysis, Rh2(OCOCF3)4-induced ECD, acetonide formation, selective oxidation reaction and X-ray crystallographic data. Structurally, pestaphilones A-I were the first azaphilones characteristically formed via a methyl group at C-9 in the C7 side chain. More importantly, a selective oxidation reaction was firstly set up to resolve the absolute configuration of flexible side chain containing azaphilones, and an acetonide formation based Rh2(OCOCF3)4-induced ECD experiment was performed to identify the configurations of the oxygenated pyranoquinone core in the azaphilones. In bioassay, pestaphilones A-F displayed potential immunosuppressive activity in concanavalin A (Con A)-induced T lymphocyte proliferation, with IC50 values ranging from (9.36 ± 1.14) μM to (35.21 ± 3.25) μM.
Collapse
Affiliation(s)
- Mengyi Deng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuben Qiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
20
|
Zhao WY, Luan ZL, Sun CP, Zhang BJ, Jin LL, Deng S, Zhang HL, Yu ZL, Wang C, Ma XC. Metabolites isolated from the human intestinal fungus Penicillium oxalicum SL2 and their agonistic effects on PXR and FXR. PHYTOCHEMISTRY 2022; 193:112974. [PMID: 34653908 DOI: 10.1016/j.phytochem.2021.112974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Intestinal commensal fungi are vital to human health, and their metabolites play a key role in the reciprocal relationship. In the present work, eighteen alkaloids and seven monoterpenoids were isolated from the fermentation of the human intestinal fungus Penicillium oxalicum SL2, including seven undescribed alkaloids (penicilloxalines A-G), three undescribed monoterpenoids (penicilloxalines H-J), and fifteen reported compounds. The structures of the isolated compounds were identified by HRESIMS, 1D and 2D NMR, electronic circular dichroism spectra and quantum chemical calculations. Some metabolites displayed moderate agonistic effects against the pregnane X receptor (PXR), whereas (6R)3,7-dimethyl-6,7-dihydroxy-2(Z)-octenoic acid displayed a significant agonistic effect against the farnesoid X receptor (FXR) with an EC50 value of 0.43 μM, which was verified by investigating FXR downstream target genes and proteins, such as small heterodimer partner 1 (SHP1), fibroblast growth factor (FGF), and bile salt export pump (BSEP).
Collapse
Affiliation(s)
- Wen-Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Zhi-Lin Luan
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bao-Jing Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Ling-Ling Jin
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Sa Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Hou-Li Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Zhen-Long Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chao Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, 116044, People's Republic of China.
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian, 116044, People's Republic of China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
21
|
Liu L, Wang Z. Azaphilone alkaloids: prospective source of natural food pigments. Appl Microbiol Biotechnol 2021; 106:469-484. [PMID: 34921328 DOI: 10.1007/s00253-021-11729-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/19/2023]
Abstract
Azaphilone, biosynthesized by polyketide synthase, is a class of fungal metabolites. In this review, after brief introduction of the natural azaphilone diversity, we in detail discussed azaphilic addition reaction involving conversion of natural azaphilone into the corresponding azaphilone alkaloid. Then, setting red Monascus pigments (a traditional food colorant in China) as example, we presented a new strategy, i.e., interfacing azaphilic addition reaction with living microbial metabolism in a one-pot process, to produce azaphilone alkaloid with a specified amine residue (red Monascus pigments) during submerged culture. Benefit from the red Monascus pigments with a specified amine residue, the influence of primary amine on characteristics of the food colorant was highlighted. Finally, the progress for screening of alternative azaphilone alkaloids (production from interfacing azaphilic addition reaction with submerged culture of Talaromyces sp. or Penicillium sp.) as natural food colorant was reviewed. KEY POINTS: • Azaphilic addition reaction of natural azaphilone is biocompatible • Red Monascus pigment is a classic example of azaphilone alkaloids • Azaphilone alkaloids are alterative natural food colorant.
Collapse
Affiliation(s)
- Lujie Liu
- State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
22
|
Yang W, Yuan J, Tan Q, Chen Y, Zhu Y, Jiang H, Zou G, Zang Z, Wang B, She Z. Peniazaphilones A—I, Produced by Co‐culturing of Mangrove Endophytic Fungi,
Penicillium sclerotiorum
THSH
‐4 and
Penicillium sclerotiorum
ZJHJJ
‐18. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wencong Yang
- School of Chemistry Sun Yat‐Sen University Guangzhou Guangdong 510275 China
| | - Jie Yuan
- Department of Biochemistry Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou Guangdong 510080 China
- Key Laboratory of Tropical Disease Control, Sun Yat‐Sen University, Ministry of Education Guangzhou Guangdong 510080 China
| | - Qi Tan
- School of Chemistry Sun Yat‐Sen University Guangzhou Guangdong 510275 China
| | - Yan Chen
- School of Chemistry Sun Yat‐Sen University Guangzhou Guangdong 510275 China
- National R & D Center for Edible Fungus Processing Technology Henan University Kaifeng Henan 475004 China
| | - Yujia Zhu
- Department of Biochemistry Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou Guangdong 510080 China
- Key Laboratory of Tropical Disease Control, Sun Yat‐Sen University, Ministry of Education Guangzhou Guangdong 510080 China
| | - Hongming Jiang
- School of Chemistry Sun Yat‐Sen University Guangzhou Guangdong 510275 China
| | - Ge Zou
- School of Chemistry Sun Yat‐Sen University Guangzhou Guangdong 510275 China
| | - Zhenming Zang
- School of Chemistry Sun Yat‐Sen University Guangzhou Guangdong 510275 China
| | - Bo Wang
- School of Chemistry Sun Yat‐Sen University Guangzhou Guangdong 510275 China
| | - Zhigang She
- School of Chemistry Sun Yat‐Sen University Guangzhou Guangdong 510275 China
| |
Collapse
|
23
|
Anti-Inflammatory Azaphilones from the Edible Alga-Derived Fungus Penicillium sclerotiorum. Mar Drugs 2021; 19:md19100529. [PMID: 34677428 PMCID: PMC8537458 DOI: 10.3390/md19100529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
To discover the new medical entity from edible marine algae, our continuously natural product investigation focused on endophytes from marine macroalgae Grateloupia sp. Two new azaphilones, 8a-epi-hypocrellone A (1), 8a-epi-eupenicilazaphilone C (2), together with five known azaphilones, hypocrellone A (3), eupenicilazaphilone C (4), ((1E,3E)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (5), sclerotiorin (6), and isochromophilone IV (7) were isolated from the alga-derived fungus Penicillium sclerotiorum. The structures of isolated azaphilones (1–7) were elucidated by spectrometric identification, especially HRESIMS, CD, and NMR data analyses. Concerning bioactivity, cytotoxic, anti-inflammatory, and anti-fibrosis activities of those isolates were evaluated. As a result, compound 1 showed selective toxicity toward neuroblastoma cell line SH-SY5Y among seven cancer and one fibroblast cell lines. 20 μM of compounds 1, 3, and 7 inhibited the TNF-α-induced NFκB phosphorylation but did not change the NFκB activity. Compounds 2 and 6 respectively promoted and inhibited SMAD-mediated transcriptional activities stimulated by TGF-β.
Collapse
|
24
|
Bang S, Baek JY, Kim GJ, Kim J, Kim S, Deyrup ST, Choi H, Kang KS, Shim SH. Azaphilones from an Endophytic Penicillium sp. Prevent Neuronal Cell Death via Inhibition of MAPKs and Reduction of Bax/Bcl-2 Ratio. JOURNAL OF NATURAL PRODUCTS 2021; 84:2226-2237. [PMID: 34378933 DOI: 10.1021/acs.jnatprod.1c00298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fourteen azaphilone-type polyketides (1-14), including nine new ones (1-6 and 8-10), were isolated from cultures of Vitex rotundifolia-associated Penicillium sp. JVF17, and their structures were determined by spectroscopic analysis together with computational methods and chemical reactions. Neuroprotective effects of the isolated compounds were evaluated against glutamate-induced neurotoxicity. Treatment with compounds 3, 6, 7, and 11-14 increased cell viabilities of hippocampal neuronal cells damaged by glutamate, with compound 12 being the most potent. Compound 12 markedly decreased intracellular Ca2+ and nuclear condensation levels. Mechanistically, molecular markers of apoptosis induced by treatment with glutamate, i.e., phosphorylation of MAPKs and elevated Bax/Bcl-2 expression ratio, were significantly lowered by compound 12. The azaphilones with an isoquinoline core structure were more active than those with pyranoquinones, but N-substitution decreased the activity. This study, including the structure-activity relationship, indicates that the azaphilone scaffold is a promising lead toward the development of novel neuroprotective agents.
Collapse
Affiliation(s)
- Sunghee Bang
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Geum Jin Kim
- College of Pharmacy and Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jaekyeong Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - SungJin Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Hyukjae Choi
- College of Pharmacy and Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Hebra T, Elie N, Poyer S, Van Elslande E, Touboul D, Eparvier V. Dereplication, Annotation, and Characterization of 74 Potential Antimicrobial Metabolites from Penicillium Sclerotiorum Using t-SNE Molecular Networks. Metabolites 2021; 11:metabo11070444. [PMID: 34357338 PMCID: PMC8303670 DOI: 10.3390/metabo11070444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/03/2022] Open
Abstract
Microorganisms associated with termites are an original resource for identifying new chemical scaffolds or active metabolites. A molecular network was generated from a collection of strain extracts analyzed by liquid chromatography coupled to tandem high-resolution mass spectrometry, a molecular network was generated, and activities against the human pathogens methicillin-resistant Staphylococcus aureus, Candida albicans and Trichophyton rubrum were mapped, leading to the selection of a single active extract of Penicillium sclerotiorum SNB-CN111. This fungal species is known to produce azaphilones, a colorful family of polyketides with a wide range of biological activities and economic interests in the food industry. By exploring the molecular network data, it was shown that the chemical diversity related to the P. sclerotiorum metabolome largely exceeded the data already reported in the literature. According to the described fragmentation pathways of protonated azaphilones, the annotation of 74 azaphilones was proposed, including 49 never isolated or synthesized thus far. Our hypothesis was validated by the isolation and characterization of eight azaphilones, among which three new azaphilones were chlorogeumasnol (63), peniazaphilone E (74) and 7-deacetylisochromophilone VI (80).
Collapse
Affiliation(s)
| | | | | | | | - David Touboul
- Correspondence: (D.T.); (V.E.); Tel.: +33-169-823-032 (D.T.); +33-169-823-679 (V.E.)
| | - Véronique Eparvier
- Correspondence: (D.T.); (V.E.); Tel.: +33-169-823-032 (D.T.); +33-169-823-679 (V.E.)
| |
Collapse
|
26
|
Wu S, Liu L, Zhang X, Wang Z. Submerged culture of Penicillium sclerotiorum for production of rotiorin alkaloids by using biosynthetic and chemical catalytic cascade reactions. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Tsukamoto S, Koyanagi Y, Hitora Y. Peniphilones A and B: Azaphilone Alkaloids from the Endophytic Fungus Penicillium maximae. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Tian C, Zhang Y, Mu X, Quan J, Sun M. Optical physics on chiral brominated azapirones: Bromophilone A and B. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118780. [PMID: 32801023 DOI: 10.1016/j.saa.2020.118780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
In this work, we use the visualization method to study their intramolecular electric-magnetic interactions and reveal the physical mechanism of their electronic transition to explain the cause of the opposite ECD spectrum orientations. Azaphilone A and B are two chiral molecules, due to their differing chirality, the electronic circular dichroism (ECD) spectra of bromophilone A and B are very different at 431 nm. Based on the two-step transition process, the charge-transfer characteristics of the corresponding two-photon excited states of the two chiral molecules are analysed in detail by calculating the photoinduced charge transfer and electron-hole coherence in the two-photon absorption (TPA) process.
Collapse
Affiliation(s)
- Chunhua Tian
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Yitong Zhang
- School of Mathematics and Physics, Center for Green Innovation, Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xijiao Mu
- School of Mathematics and Physics, Center for Green Innovation, Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.
| | - Jun Quan
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China.
| | - Mengtao Sun
- School of Mathematics and Physics, Center for Green Innovation, Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.
| |
Collapse
|
29
|
Wang W, Yang J, Liao YY, Cheng G, Chen J, Cheng XD, Qin JJ, Shao Z. Cytotoxic Nitrogenated Azaphilones from the Deep-Sea-Derived Fungus Chaetomium globosum MP4-S01-7. JOURNAL OF NATURAL PRODUCTS 2020; 83:1157-1166. [PMID: 32193933 DOI: 10.1021/acs.jnatprod.9b01165] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eight new nitrogenated azaphilones (1-8) and two known compounds (chaetoviridin A and chaetoviridin E, 9, 10) were isolated from the culture of the deep-sea-derived fungus Chaetomium globosum MP4-S01-7. The absolute configurations of new compounds were elucidated by HSQC-HECADE NMR data, J-based configuration analysis, and modified Mosher's method and finally verified by comparison of recorded and computed NMR chemical shifts from quantum chemical calculations coupled with a statistical procedure (DP4+). All of the compounds were evaluated for their in vitro cytotoxicities against the gastric cancer cell lines MGC803 and AGS, and most of them showed significant inhibition on cancer cell viability at 10 μM. Among them, compounds 1, 2, and 5 exerted the most potent cytotoxic activities, with IC50 values less than 1 μM. Further studies showed that compound 2 inhibited cell cycle progression, and both compounds 1 and 2 induced apoptosis of gastric cancer cells in a concentration-dependent manner.
Collapse
Affiliation(s)
- Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, People's Republic of China
| | - Jing Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, People's Republic of China
| | - Yan-Yan Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, People's Republic of China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, People's Republic of China
| | - Jing Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, People's Republic of China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences; Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road #1, Hangzhou 310022, People's Republic of China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, People's Republic of China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences; Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road #1, Hangzhou 310022, People's Republic of China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, People's Republic of China
| |
Collapse
|
30
|
Houbraken J, Kocsubé S, Visagie C, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson R, Frisvad J. Classification of Aspergillus, Penicillium, Talaromyces and related genera ( Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud Mycol 2020; 95:5-169. [PMID: 32855739 PMCID: PMC7426331 DOI: 10.1016/j.simyco.2020.05.002] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted: Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae. The Eurotiales includes 28 genera: 15 genera are accommodated in the Aspergillaceae (Aspergillago, Aspergillus, Evansstolkia, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Pseudohamigera, Pseudopenicillium, Sclerocleista, Warcupiella, Xerochrysium and Xeromyces), eight in the Trichocomaceae (Acidotalaromyces, Ascospirella, Dendrosphaera, Rasamsonia, Sagenomella, Talaromyces, Thermomyces, Trichocoma), two in the Thermoascaceae (Paecilomyces, Thermoascus) and one in the Penicillaginaceae (Penicillago). The classification of the Elaphomycetaceae was not part of this study, but according to literature two genera are present in this family (Elaphomyces and Pseudotulostoma). The use of an infrageneric classification system has a long tradition in Aspergillus and Penicillium. Most recent taxonomic studies focused on the sectional level, resulting in a well-established sectional classification in these genera. In contrast, a series classification in Aspergillus and Penicillium is often outdated or lacking, but is still relevant, e.g., the allocation of a species to a series can be highly predictive in what functional characters the species might have and might be useful when using a phenotype-based identification. The majority of the series in Aspergillus and Penicillium are invalidly described and here we introduce a new series classification. Using a phylogenetic approach, often supported by phenotypic, physiologic and/or extrolite data, Aspergillus is subdivided in six subgenera, 27 sections (five new) and 75 series (73 new, one new combination), and Penicillium in two subgenera, 32 sections (seven new) and 89 series (57 new, six new combinations). Correct identification of species belonging to the Eurotiales is difficult, but crucial, as the species name is the linking pin to information. Lists of accepted species are a helpful aid for researchers to obtain a correct identification using the current taxonomic schemes. In the most recent list from 2014, 339 Aspergillus, 354 Penicillium and 88 Talaromyces species were accepted. These numbers increased significantly, and the current list includes 446 Aspergillus (32 % increase), 483 Penicillium (36 % increase) and 171 Talaromyces (94 % increase) species, showing the large diversity and high interest in these genera. We expanded this list with all genera and species belonging to the Eurotiales (except those belonging to Elaphomycetaceae). The list includes 1 187 species, distributed over 27 genera, and contains MycoBank numbers, collection numbers of type and ex-type cultures, subgenus, section and series classification data, information on the mode of reproduction, and GenBank accession numbers of ITS, beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences.
Collapse
Key Words
- Acidotalaromyces Houbraken, Frisvad & Samson
- Acidotalaromyces lignorum (Stolk) Houbraken, Frisvad & Samson
- Ascospirella Houbraken, Frisvad & Samson
- Ascospirella lutea (Zukal) Houbraken, Frisvad & Samson
- Aspergillus chaetosartoryae Hubka, Kocsubé & Houbraken
- Classification
- Evansstolkia Houbraken, Frisvad & Samson
- Evansstolkia leycettana (H.C. Evans & Stolk) Houbraken, Frisvad & Samson
- Hamigera brevicompacta (H.Z. Kong) Houbraken, Frisvad & Samson
- Infrageneric classification
- New combinations, series
- New combinations, species
- New genera
- New names
- New sections
- New series
- New taxa
- Nomenclature
- Paecilomyces lagunculariae (C. Ram) Houbraken, Frisvad & Samson
- Penicillaginaceae Houbraken, Frisvad & Samson
- Penicillago kabunica (Baghd.) Houbraken, Frisvad & Samson
- Penicillago mirabilis (Beliakova & Milko) Houbraken, Frisvad & Samson
- Penicillago moldavica (Milko & Beliakova) Houbraken, Frisvad & Samson
- Phialomyces arenicola (Chalab.) Houbraken, Frisvad & Samson
- Phialomyces humicoloides (Bills & Heredia) Houbraken, Frisvad & Samson
- Phylogeny
- Polythetic classes
- Pseudohamigera Houbraken, Frisvad & Samson
- Pseudohamigera striata (Raper & Fennell) Houbraken, Frisvad & Samson
- Talaromyces resinae (Z.T. Qi & H.Z. Kong) Houbraken & X.C. Wang
- Talaromyces striatoconidius Houbraken, Frisvad & Samson
- Taxonomic novelties: New family
- Thermoascus verrucosus (Samson & Tansey) Houbraken, Frisvad & Samson
- Thermoascus yaguchii Houbraken, Frisvad & Samson
- in Aspergillus: sect. Bispori S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- in Aspergillus: ser. Acidohumorum Houbraken & Frisvad
- in Aspergillus: ser. Inflati (Stolk & Samson) Houbraken & Frisvad
- in Penicillium: sect. Alfrediorum Houbraken & Frisvad
- in Penicillium: ser. Adametziorum Houbraken & Frisvad
- in Penicillium: ser. Alutacea (Pitt) Houbraken & Frisvad
- sect. Crypta Houbraken & Frisvad
- sect. Eremophila Houbraken & Frisvad
- sect. Formosana Houbraken & Frisvad
- sect. Griseola Houbraken & Frisvad
- sect. Inusitata Houbraken & Frisvad
- sect. Lasseniorum Houbraken & Frisvad
- sect. Polypaecilum Houbraken & Frisvad
- sect. Raperorum S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Silvatici S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Vargarum Houbraken & Frisvad
- ser. Alliacei Houbraken & Frisvad
- ser. Ambigui Houbraken & Frisvad
- ser. Angustiporcata Houbraken & Frisvad
- ser. Arxiorum Houbraken & Frisvad
- ser. Atramentosa Houbraken & Frisvad
- ser. Aurantiobrunnei Houbraken & Frisvad
- ser. Avenacei Houbraken & Frisvad
- ser. Bertholletiarum Houbraken & Frisvad
- ser. Biplani Houbraken & Frisvad
- ser. Brevicompacta Houbraken & Frisvad
- ser. Brevipedes Houbraken & Frisvad
- ser. Brunneouniseriati Houbraken & Frisvad
- ser. Buchwaldiorum Houbraken & Frisvad
- ser. Calidousti Houbraken & Frisvad
- ser. Canini Houbraken & Frisvad
- ser. Carbonarii Houbraken & Frisvad
- ser. Cavernicolarum Houbraken & Frisvad
- ser. Cervini Houbraken & Frisvad
- ser. Chevalierorum Houbraken & Frisvad
- ser. Cinnamopurpurea Houbraken & Frisvad
- ser. Circumdati Houbraken & Frisvad
- ser. Clavigera Houbraken & Frisvad
- ser. Conjuncti Houbraken & Frisvad
- ser. Copticolarum Houbraken & Frisvad
- ser. Coremiiformes Houbraken & Frisvad
- ser. Corylophila Houbraken & Frisvad
- ser. Costaricensia Houbraken & Frisvad
- ser. Cremei Houbraken & Frisvad
- ser. Crustacea (Pitt) Houbraken & Frisvad
- ser. Dalearum Houbraken & Frisvad
- ser. Deflecti Houbraken & Frisvad
- ser. Egyptiaci Houbraken & Frisvad
- ser. Erubescentia (Pitt) Houbraken & Frisvad
- ser. Estinogena Houbraken & Frisvad
- ser. Euglauca Houbraken & Frisvad
- ser. Fennelliarum Houbraken & Frisvad
- ser. Flavi Houbraken & Frisvad
- ser. Flavipedes Houbraken & Frisvad
- ser. Fortuita Houbraken & Frisvad
- ser. Fumigati Houbraken & Frisvad
- ser. Funiculosi Houbraken & Frisvad
- ser. Gallaica Houbraken & Frisvad
- ser. Georgiensia Houbraken & Frisvad
- ser. Goetziorum Houbraken & Frisvad
- ser. Gracilenta Houbraken & Frisvad
- ser. Halophilici Houbraken & Frisvad
- ser. Herqueorum Houbraken & Frisvad
- ser. Heteromorphi Houbraken & Frisvad
- ser. Hoeksiorum Houbraken & Frisvad
- ser. Homomorphi Houbraken & Frisvad
- ser. Idahoensia Houbraken & Frisvad
- ser. Implicati Houbraken & Frisvad
- ser. Improvisa Houbraken & Frisvad
- ser. Indica Houbraken & Frisvad
- ser. Japonici Houbraken & Frisvad
- ser. Jiangxiensia Houbraken & Frisvad
- ser. Kalimarum Houbraken & Frisvad
- ser. Kiamaensia Houbraken & Frisvad
- ser. Kitamyces Houbraken & Frisvad
- ser. Lapidosa (Pitt) Houbraken & Frisvad
- ser. Leporum Houbraken & Frisvad
- ser. Leucocarpi Houbraken & Frisvad
- ser. Livida Houbraken & Frisvad
- ser. Longicatenata Houbraken & Frisvad
- ser. Macrosclerotiorum Houbraken & Frisvad
- ser. Monodiorum Houbraken & Frisvad
- ser. Multicolores Houbraken & Frisvad
- ser. Neoglabri Houbraken & Frisvad
- ser. Neonivei Houbraken & Frisvad
- ser. Nidulantes Houbraken & Frisvad
- ser. Nigri Houbraken & Frisvad
- ser. Nivei Houbraken & Frisvad
- ser. Nodula Houbraken & Frisvad
- ser. Nomiarum Houbraken & Frisvad
- ser. Noonimiarum Houbraken & Frisvad
- ser. Ochraceorosei Houbraken & Frisvad
- ser. Olivimuriarum Houbraken & Frisvad
- ser. Osmophila Houbraken & Frisvad
- ser. Paradoxa Houbraken & Frisvad
- ser. Paxillorum Houbraken & Frisvad
- ser. Penicillioides Houbraken & Frisvad
- ser. Phoenicea Houbraken & Frisvad
- ser. Pinetorum (Pitt) Houbraken & Frisvad
- ser. Polypaecilum Houbraken & Frisvad
- ser. Pulvini Houbraken & Frisvad
- ser. Quercetorum Houbraken & Frisvad
- ser. Raistrickiorum Houbraken & Frisvad
- ser. Ramigena Houbraken & Frisvad
- ser. Restricti Houbraken & Frisvad
- ser. Robsamsonia Houbraken & Frisvad
- ser. Rolfsiorum Houbraken & Frisvad
- ser. Roseopurpurea Houbraken & Frisvad
- ser. Rubri Houbraken & Frisvad
- ser. Salinarum Houbraken & Frisvad
- ser. Samsoniorum Houbraken & Frisvad
- ser. Saturniformia Houbraken & Frisvad
- ser. Scabrosa Houbraken & Frisvad
- ser. Sclerotigena Houbraken & Frisvad
- ser. Sclerotiorum Houbraken & Frisvad
- ser. Sheariorum Houbraken & Frisvad
- ser. Simplicissima Houbraken & Frisvad
- ser. Soppiorum Houbraken & Frisvad
- ser. Sparsi Houbraken & Frisvad
- ser. Spathulati Houbraken & Frisvad
- ser. Spelaei Houbraken & Frisvad
- ser. Speluncei Houbraken & Frisvad
- ser. Spinulosa Houbraken & Frisvad
- ser. Stellati Houbraken & Frisvad
- ser. Steyniorum Houbraken & Frisvad
- ser. Sublectatica Houbraken & Frisvad
- ser. Sumatraensia Houbraken & Frisvad
- ser. Tamarindosolorum Houbraken & Frisvad
- ser. Teporium Houbraken & Frisvad
- ser. Terrei Houbraken & Frisvad
- ser. Thermomutati Houbraken & Frisvad
- ser. Thiersiorum Houbraken & Frisvad
- ser. Thomiorum Houbraken & Frisvad
- ser. Unguium Houbraken & Frisvad
- ser. Unilaterales Houbraken & Frisvad
- ser. Usti Houbraken & Frisvad
- ser. Verhageniorum Houbraken & Frisvad
- ser. Versicolores Houbraken & Frisvad
- ser. Virgata Houbraken & Frisvad
- ser. Viridinutantes Houbraken & Frisvad
- ser. Vitricolarum Houbraken & Frisvad
- ser. Wentiorum Houbraken & Frisvad
- ser. Westlingiorum Houbraken & Frisvad
- ser. Whitfieldiorum Houbraken & Frisvad
- ser. Xerophili Houbraken & Frisvad
- series Tularensia (Pitt) Houbraken & Frisvad
Collapse
Affiliation(s)
- J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - X.-C. Wang
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - M. Meijer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - B. Kraak
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine Technical University of Denmark, Søltofts Plads, B. 221, Kongens Lyngby, DK 2800, Denmark
| |
Collapse
|
31
|
Huo C, Lu X, Zheng Z, Li Y, Xu Y, Zheng H, Niu Y. Azaphilones with protein tyrosine phosphatase inhibitory activity isolated from the fungus Aspergillus deflectus. PHYTOCHEMISTRY 2020; 170:112224. [PMID: 31812919 DOI: 10.1016/j.phytochem.2019.112224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/06/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Six undescribed azaphilones, deflectins C1-C3, deflectins D1-D2, and deflectin E, along with five known azaphilones were obtained from a solid culture of the wild fungus Aspergillus deflectus NCC0415. Their structures were determined by HRESIMS, NMR and ECD analyses, together with the GIAO 13C NMR calculation method. All compounds displayed strong or moderate inhibitory activity against protein tyrosine phosphatases SHP2 and PTP1B. Structure-activity relationship analysis of these azaphilones suggested that the length of the ketone aliphatic side chain would affect their SHP2 and PTP1B inhibitory activity. In addition, the presence of a Δ8(12) double bond on γ-lactone ring and the presence of CH3-2' in fatty chains may increase their inhibitory activity.
Collapse
Affiliation(s)
- Changhong Huo
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Xinhua Lu
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, 050015, PR China.
| | - Zhihui Zheng
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, 050015, PR China
| | - Yeying Li
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, 050015, PR China
| | - Yan Xu
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, 050015, PR China
| | - Haizhou Zheng
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, 050015, PR China
| | - Yuanchen Niu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, PR China
| |
Collapse
|
32
|
Chen C, Tao H, Chen W, Yang B, Zhou X, Luo X, Liu Y. Recent advances in the chemistry and biology of azaphilones. RSC Adv 2020; 10:10197-10220. [PMID: 35498578 PMCID: PMC9050426 DOI: 10.1039/d0ra00894j] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
Recent advances in the chemistry and biology of structurally diverse azaphilones from 2012 to 2019.
Collapse
Affiliation(s)
- Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Huaming Tao
- School of Traditional Chinese Medicine
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Weihao Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Xiaowei Luo
- Institute of Marine Drugs
- Guangxi University of Chinese Medicine
- Nanning 530200
- P. R. China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| |
Collapse
|
33
|
Pyser JB, Baker Dockrey SA, Benítez AR, Joyce LA, Wiscons RA, Smith JL, Narayan ARH. Stereodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products. J Am Chem Soc 2019; 141:18551-18559. [PMID: 31692339 PMCID: PMC7029798 DOI: 10.1021/jacs.9b09385] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selective access to a targeted isomer is often critical in the synthesis of biologically active molecules. Whereas small-molecule reagents and catalysts often act with anticipated site- and stereoselectivity, this predictability does not extend to enzymes. Further, the lack of access to catalysts that provide complementary selectivity creates a challenge in the application of biocatalysis in synthesis. Here, we report an approach for accessing biocatalysts with complementary selectivity that is orthogonal to protein engineering. Through the use of a sequence similarity network (SSN), a number of sequences were selected, and the corresponding biocatalysts were evaluated for reactivity and selectivity. With a number of biocatalysts identified that operate with complementary site- and stereoselectivity, these catalysts were employed in the stereodivergent, chemoenzymatic synthesis of azaphilone natural products. Specifically, the first syntheses of trichoflectin, deflectin-1a, and lunatoic acid A were achieved. In addition, chemoenzymatic syntheses of these azaphilones supplied enantioenriched material for reassignment of the absolute configuration of trichoflectin and deflectin-1a based on optical rotation, CD spectra, and X-ray crystallography.
Collapse
Affiliation(s)
- Joshua B. Pyser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Summer A. Baker Dockrey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Attabey Rodríguez Benítez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Leo A. Joyce
- Department of Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065
| | - Ren A. Wiscons
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Alison R. H. Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
34
|
Frank M, Hartmann R, Plenker M, Mándi A, Kurtán T, Özkaya FC, Müller WEG, Kassack MU, Hamacher A, Lin W, Liu Z, Proksch P. Brominated Azaphilones from the Sponge-Associated Fungus Penicillium canescens Strain 4.14.6a. JOURNAL OF NATURAL PRODUCTS 2019; 82:2159-2166. [PMID: 31359750 DOI: 10.1021/acs.jnatprod.9b00151] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fungus Penicillium canescens was isolated from the inner tissue of the Mediterranian sponge Agelas oroides. Fermentation of the fungus on solid rice medium yielded one new chlorinated diphenyl ether (1) and 13 known compounds (2-14). Addition of 5% NaBr to the rice medium increased the amounts of 4-6, while lowering the amounts of 8, 12, and 14. Furthermore, it induced the accumulation of 17 and two new brominated azaphilones, bromophilones A and B (15 and 16). Compounds 15 and 16 are the first example of azaphilones with the connection of a benzene moiety and the pyranoquinone core through a methylene group. The structures of the new compounds were elucidated based on the 1D and 2D NMR spectra as well as on HRESIMS data. The absolute configuration of the condensed bicyclic moiety of 15 and 16 was determined by sTDA ECD calculations. Compound 16 exhibited moderate cytotoxicity against the mouse lymphoma cell line L5178Y (IC50 8.9 μM), as well as against the human ovarian cancer cell line A2780 (IC50 2.7 μM), whereas the stereoisomer 15 was considerably less active.
Collapse
Affiliation(s)
- Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Rudolf Hartmann
- Institute of Complex Systems: Strukturbiochemie , Forschungszentrum Juelich , Wilhelm-Johnen-Strasse , 52428 Juelich , Germany
| | - Malte Plenker
- Institute of Complex Systems: Strukturbiochemie , Forschungszentrum Juelich , Wilhelm-Johnen-Strasse , 52428 Juelich , Germany
| | - Attila Mándi
- Department of Organic Chemistry , University of Debrecen , Egyetem tér 1 , Debrecen 4032 , Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry , University of Debrecen , Egyetem tér 1 , Debrecen 4032 , Hungary
| | - Ferhat Can Özkaya
- Faculty of Fisheries , İzmir Katip Çelebi University , Çiğli, 35620 İzmir , Turkey
| | - Werner E G Müller
- Institute of Physiological Chemistry , Universitätsmedizin der Johannes Gutenberg-Universität Mainz , 55128 Mainz , Germany
| | - Matthias U Kassack
- Institute for Pharmaceutical and Medicinal Chemistry , Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Alexandra Hamacher
- Institute for Pharmaceutical and Medicinal Chemistry , Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| |
Collapse
|