1
|
Sun S, Guo J, Zhu Z, Zhou J. Microbial degradation mechanisms of the neonicotinoids acetamiprid and flonicamid and the associated toxicity assessments. Front Microbiol 2024; 15:1500401. [PMID: 39564486 PMCID: PMC11573777 DOI: 10.3389/fmicb.2024.1500401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Extensive use of the neonicotinoid insecticides acetamiprid (ACE) and flonicamid (FLO) in agriculture poses severe environmental and ecological risks. Microbial remediation is considered a feasible approach to address these issues. Many ACE-and FLO-degrading microorganisms have been isolated and characterized, but few reviews have concentrated on the underlying degradation mechanisms. In this review, we describe the microbial degradation pathways of ACE and FLO and assess the toxicity of ACE, FLO and their metabolites. Especially, we focus on the enzymes involved in degradation of ACE and FLO, including cytochrome P450s, nitrile hydratases, amidases, and nitrilases. Those studies reviewed here further our understanding of the enzymatic mechanisms of microbial degradation of ACE and FLO, and aid in the application of microbes to remediate environmental ACE and FLO contamination.
Collapse
Affiliation(s)
- Shilei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jingjing Guo
- School of Life Science and Environmental Engineering, Nanjing Normal University Zhongbei College, Zhenjiang, China
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jiangsheng Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
2
|
Zhao YX, Chen KX, Wang L, Yuan PP, Dai YJ. Biodegradation of sulfoxaflor and photolysis of sulfoxaflor by ultraviolet radiation. Biodegradation 2023; 34:341-355. [PMID: 36808271 DOI: 10.1007/s10532-023-10020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
Sulfoxaflor (SUL, [N-[methyloxido[1-[6-(trifluoromethyl)-3-pyridinyl] ethyl]-λ4-sulfanylidene] cyanamide]) is a widely used systemic insecticide, and its residue has frequently been detected in the environment, posing a potential threat to the environment. In this study, Pseudaminobacter salicylatoxidans CGMCC 1.17248 rapidly converted SUL into X11719474 via a hydration pathway mediated by two nitrile hydratases (AnhA and AnhB). Extensive (96.4%) degradation of 0.83 mmol/L SUL was achieved by P. salicylatoxidans CGMCC 1.17248 resting cells within 30 min (half-life of SUL 6.4 min). Cell immobilization by entrapment into calcium alginate remediated 82.8% of the SUL in 90 min, and almost no SUL was observed in surface water after incubation for 3 h. P. salicylatoxidans NHases AnhA and AnhB both hydrolyzed SUL to X11719474, although AnhA exhibited much better catalytic performance. The genome sequence of P. salicylatoxidans CGMCC 1.17248 revealed that this strain could efficiently eliminate nitrile-containing insecticides and adapt to harsh environments. We firstly found that UV irradiation transforms SUL to the derivatives X11719474 and X11721061, and the potential reaction pathways were proposed. These results further deepen our understanding of the mechanisms of SUL degradation as well as the environmental fate of SUL.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Pan-Pan Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
3
|
Wei J, Wang X, Tu C, Long T, Bu Y, Wang H, Jeyakumar P, Jiang J, Deng S. Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. ENVIRONMENT INTERNATIONAL 2023; 178:108044. [PMID: 37364306 DOI: 10.1016/j.envint.2023.108044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Neonicotinoids (NEOs) are synthetic insecticides with broad-spectrum insecticidal activity and outstanding efficacy. However, their extensive use and persistence in the environment have resulted in the accumulation and biomagnification of NEOs, posing significant risks to non-target organisms and humans. This review provides a summary of research history, advancements, and highlighted topics in NEOs remediation technologies and mechanisms. Various remediation approaches have been developed, including physiochemical, microbial, and phytoremediation, with microbial and physicochemical remediation being the most extensively studied. Recent advances in physiochemical remediation have led to the development of innovative adsorbents, photocatalysts, and optimized treatment processes. High-efficiency degrading strains with well-characterized metabolic pathways have been successfully isolated and cultured for microbial remediation, while many plant species have shown great potential for phytoremediation. However, significant challenges and gaps remain in this field. Future research should prioritize isolating, domesticating or engineering high efficiency, broad-spectrum microbial strains for NEO degradation, as well as developing synergistic remediation techniques to enhance removal efficiency on multiple NEOs with varying concentrations in different environmental media. Furthermore, a shift from pipe-end treatment to pollution prevention strategies is needed, including the development of green and economically efficient alternatives such as biological insecticides. Integrated remediation technologies and case-specific strategies that can be applied to practical remediation projects need to be developed, along with clarifying NEO degradation mechanisms to improve remediation efficiency. The successful implementation of these strategies will help reduce the negative impact of NEOs on the environment and human health.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing 526061, Guangdong, China
| | - Xiaoyu Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China.
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Yuanqing Bu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China.
| |
Collapse
|
4
|
Elango D, Siddharthan N, Alaqeel SI, Subash V, Manikandan V, Almansour AI, Kayalvizhi N, Jayanthi P. Biodegradation of neonicotinoid insecticide acetamiprid by earthworm gut bacteria Brucella intermedium PDB13 and its ecotoxicity. Microbiol Res 2023; 268:127278. [PMID: 36565686 DOI: 10.1016/j.micres.2022.127278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Extensive use of neonicotinoid insecticides in recent decade had contaminated water and soil systems and poses serious environmental and health risk. Microbial degradation of toxic contaminants in the environment has been established as a sustainable tool towards its remediation. Under this context, the present study focused on the biodegradation of neonicotinoid insecticide acetamiprid, by bacterial strain Brucella intermedia PDB13 isolated from the gut of the acetamiprid exposed earthworms. To enhance acetamiprid biodegradation, suitable parameters such as pH, temperature, inoculum size and acetamiprid concentration range were optimised using Response Surface Methodology (RSM). The experimental results showed that the Brucella intermedium PDB13 can tolerate and degrade relatively high concentrations of acetamiprid (50 - 350 mg L-1). The results confirmed that maximum degradation of about 89.72% was achieved under optimized conditions. Further, confirmation of acetamiprid biodegradation was assessed through the occurrence of its degraded metabolites through HPLC, FTIR, and LCMS analysis. Based on this analysis, possible acetamiprid biodegradation pathway by Brucella intermedia PDB13 was proposed. Additionally, cytotoxicity, earthworm acute toxicity, and zebrafish embryo toxicity studies were also performed to assess the toxicity variations between the parent compound and its metabolites. The acetamiprid treated group resulted in cytotoxic effects apparently, with the increase in aberrant cells frequency (22.5 ± 3.3), when compared with its metabolites (2.3 ± 4.3) and control (1.9 ± 5.6) respectively. All these results evidently reported the degradation potential of Brucella intermedia PDB13, thereby establishing the scope for further advanced biodegradation studies towards mitigating the pesticide pollution.
Collapse
Affiliation(s)
- Duraisamy Elango
- Department of Environmental Science, Periyar University, Salem 636011, Tamil Nadu, India
| | | | - Shatha Ibrahim Alaqeel
- Department of Chemistry, College of Science, King Saud University, (034), Riyadh 11495, Saudi Arabia
| | - Velu Subash
- Department of Environmental Science, Periyar University, Salem 636011, Tamil Nadu, India
| | - Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621 Hwaragno Nowon-gu, Seoul, South Korea
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Palaniyappan Jayanthi
- Department of Environmental Science, Periyar University, Salem 636011, Tamil Nadu, India.
| |
Collapse
|
5
|
Li X, Li J, Zhao Q, Qiao L, Wang L, Yu C. Physiological, biochemical, and genomic elucidation of the Ensifer adhaerens M8 strain with simultaneous arsenic oxidation and chromium reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129862. [PMID: 36084460 DOI: 10.1016/j.jhazmat.2022.129862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
This study reports the simultaneous oxidation of As(III) and reduction of the Cr(VI) strain Ensifer adhaerens M8 screened from soils around abandoned gold tailings contaminated with highly complex metals (loids). Physiological, biochemical, and genomic techniques were used to explore the mechanism. The strain M8 could simultaneously oxidize 1 mM As(III) and reduce 45.3 % 0.1 mM Cr(VI) in 16 h, and the Cr(VI) reduction rate was increased by 5.8 % compared with the addition of Cr(VI) alone. Cellular debris was the main site of M8 arsenic oxidation. Chromium reduction was dominated by the reduction of extracellular hexavalent chromium (23.80-35.67 %). The genome of M8 included one chromosome and four plasmids, and a comparison of the genomes showed that M8 had two more plasmids than strains of the same genus, which may be related to strong environmental adaptations. M8 had 10 heavy metal resistance genes (HMRs), and plasmid D had a complete cluster of arsenic resistance-oxidation-transport genes (arsOHBCCR-aioSR-aioBA-cytCmoeA-phoBBU-PstBACS-phnCDEE). The genes involved in Cr(VI) detoxification include DNA repair (RecG, ruvABC, and UvrD), Cr(VI) transport (chrA, TonB, and CysAPTW) and Cr(VI) reduction. In summary, this study provides a molecular basis for As (III) and Cr (VI) remediation.
Collapse
Affiliation(s)
- Xianhong Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Jingru Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Qiancheng Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Longkai Qiao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Limin Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Ahmad S, Cui D, Zhong G, Liu J. Microbial Technologies Employed for Biodegradation of Neonicotinoids in the Agroecosystem. Front Microbiol 2021; 12:759439. [PMID: 34925268 PMCID: PMC8675359 DOI: 10.3389/fmicb.2021.759439] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Neonicotinoids are synthetic pesticides widely used for the control of various pests in agriculture throughout the world. They mainly attack the nicotinic acetylcholine receptors, generate nervous stimulation, receptor clot, paralysis and finally cause death. They are low volatile, highly soluble and have a long half-life in soil and water. Due to their extensive use, the environmental residues have immensely increased in the last two decades and caused many hazardous effects on non-target organisms, including humans. Hence, for the protection of the environment and diversity of living organism's the degradation of neonicotinoids has received widespread attention. Compared to the other methods, biological methods are considered cost-effective, eco-friendly and most efficient. In particular, the use of microbial species makes the degradation of xenobiotics more accessible fast and active due to their smaller size. Since this degradation also converts xenobiotics into less toxic substances, the various metabolic pathways for the microbial degradation of neonicotinoids have been systematically discussed. Additionally, different enzymes, genes, plasmids and proteins are also investigated here. At last, this review highlights the implementation of innovative tools, databases, multi-omics strategies and immobilization techniques of microbial cells to detect and degrade neonicotinoids in the environment.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Dongming Cui
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Sun S, Zhou J, Jiang J, Dai Y, Sheng M. Nitrile Hydratases: From Industrial Application to Acetamiprid and Thiacloprid Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10440-10449. [PMID: 34469128 DOI: 10.1021/acs.jafc.1c03496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The widespread application of neonicotinoid insecticides (NEOs) in agriculture causes a series of environmental and ecological problems. Microbial remediation is a popular approach to relieve these negative impacts, but the associated molecular mechanisms are rarely explored. Nitrile hydratase (NHase), an enzyme commonly used in industry for amide production, was discovered to be responsible for the degradation of acetamiprid (ACE) and thiacloprid (THI) by microbes. Since then, research into NHases in NEO degradation has attracted increasing attention. In this review, microbial degradation of ACE and THI is briefly described. We then focus on NHase evolution, gene composition, maturation mechanisms, expression, and biochemical properties with regard to application of NHases in NEO degradation for bioremediation.
Collapse
Affiliation(s)
- Shilei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jiangsheng Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Miaomiao Sheng
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| |
Collapse
|
8
|
Shen JD, Cai X, Wang M, Liu ZQ, Zheng YG. Proposed mechanism for post-translational self-modification of Co-NHase based on Co 2+ diffusion limitation. Biotechnol J 2021; 16:e2100103. [PMID: 34363653 DOI: 10.1002/biot.202100103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Nitrile hydratase (NHase), was an excellent biocatalyst for the synthesis of amide compounds. NHase was typical heterodimeric metalloprotein, required of the assistance of activator for active expressions. In this work, we found a special Co-NHase HBA from Caldalkalibacillus thermarum, which had the ability of post-translational self-modification and could incorporate Co2+ into the catalytic center in the absence of activator. METHOD AND RESULTS We simulated the movement of Co2+ in silico and established a hypothetical model to predict the Co2+ incorporation efficiency (XCo ) of NHases. According to the simulation results, NHase mutants with different positive charge distribution were constructed. Compared with wild-type, the Co2+ incorporation efficiency of K1 (M10K) was increased by 2.1-fold from 0.36 to 0.76, and the specific activity was increased by 3.2-fold from 136.3 to 432.0 U/mg, while mutant K1H1 (M10K, D11H) and K2H2 (M10K, D11H, E20K, N21H) lost the ability of post-translation self-modification. CONCLUSIONS AND IMPLICATIONS The interactions of positively charged residues near the catalytic center, such as lysine with strong electrostatic repulsive interaction, arginine with weak electrostatic repulsive interaction and histidine with metal affinity, could limit the free diffusion of Co2+ in NHase and affect the efficiency of post-translational self-modification. This work also provided an effective strategy for protein engineering of NHases and other metalloenzymes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ji-Dong Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ming Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
9
|
Zhao YX, Wang L, Chen KX, Jiang ND, Sun SL, Ge F, Dai YJ. Biodegradation of flonicamid by Ensifer adhaerens CGMCC 6315 and enzymatic characterization of the nitrile hydratases involved. Microb Cell Fact 2021; 20:133. [PMID: 34256737 PMCID: PMC8278588 DOI: 10.1186/s12934-021-01620-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO) is a new type of pyridinamide insecticide that regulates insect growth. Because of its wide application in agricultural production and high solubility in water, it poses potential risks to aquatic environments and food chain. RESULTS In the present study, Ensifer adhaerens CGMCC 6315 was shown to efficiently transform FLO into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) via a hydration pathway mediated by two nitrile hydratases, PnhA and CnhA. In pure culture, resting cells of E. adhaerens CGMCC 6315 degraded 92% of 0.87 mmol/L FLO within 24 h at 30 °C (half-life 7.4 h). Both free and immobilized (by gel beads, using calcium alginate as a carrier) E. adhaerens CGMCC 6315 cells effectively degraded FLO in surface water. PnhA has, to our knowledge, the highest reported degradation activity toward FLO, Vmax = 88.7 U/mg (Km = 2.96 mmol/L). Addition of copper ions could increase the enzyme activity of CnhA toward FLO by 4.2-fold. Structural homology modeling indicated that residue β-Glu56 may be important for the observed significant difference in enzyme activity between PnhA and CnhA. CONCLUSIONS Application of E. adhaerens may be a good strategy for bioremediation of FLO in surface water. This work furthers our understanding of the enzymatic mechanisms of biodegradation of nitrile-containing insecticides and provides effective transformation strategies for microbial remediation of FLO contamination.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Neng-Dang Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Shi-Lei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116 People’s Republic of China
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042 People’s Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| |
Collapse
|
10
|
Anjos CS, Lima RN, Porto ALM. An overview of neonicotinoids: biotransformation and biodegradation by microbiological processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37082-37109. [PMID: 34056690 DOI: 10.1007/s11356-021-13531-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoids are a class of pesticides widely used in different phases of agricultural crops. Similar to other classes of pesticides, they can damage human and environmental health if overused, and can be resistent to degradation. This is especially relevant to insect health, pollination, and aquatic biodiversity. Nevertheless, application of pesticides is still crucial for food production and pest control, and should therefore be carefully monitored by the government to control or reduce neonicotinoid contamination reaching human and animal feed. Aware of this problem, studies have been carried out to reduce or eliminate neonicotinoid contamination from the environment. One example of a green protocol is bioremediation. This review discusses the most recent microbial biodegradation and bioremediation processes for neonicotinoids, which employ isolated microorganisms (bacteria and fungi), consortiums of microorganisms, and different types of soils, biobeds, and biomixtures.
Collapse
Affiliation(s)
- Charlene S Anjos
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Rafaely N Lima
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil.
| |
Collapse
|
11
|
Sun S, Fan Z, Zhao J, Dai Z, Zhao Y, Dai Y. Copper stimulates neonicotinoid insecticide thiacloprid degradation by Ensifer adhaerens TMX-23. J Appl Microbiol 2021; 131:2838-2848. [PMID: 34075672 DOI: 10.1111/jam.15172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 11/28/2022]
Abstract
AIMS Aims of this study are to elucidate the molecular mechanism of copper-improved thiacloprid (THI) degradation by Ensifer adhaerens TMX-23 and characterize copper resistance of this strain. METHODS AND RESULTS Resting cells of E. adhaerens TMX-23 were used to degrade THI, with formation of THI amide and 98·31% of 0·59 mmol l-1 THI was degraded in 100 min. The addition of copper improved the degradation of THI and showed little inhibitory effects on the growth of E. adhaerens TMX-23. E. adhaerens TMX-23 degraded THI to THI amide by nitrile hydratases (NhcA and NhpA). QPCR analysis indicated that the expression of nhpA was up-regulated in the presence of copper. E. adhaerens TMX-23 nitrile hydratases were purified, and enzyme assay of NhpA exhibited the highest NHase activity toward THI. The addition of copper activated the activity of NhcA. Soil degradation experiment indicated that E. adhaerens TMX-23 could quickly eliminate THI residual in copper-added soil. CONCLUSIONS Copper improved THI degradation by E. adhaerens TMX-23 was attributed to the induced expression of nhpA and activated NhcA. SIGNIFICANCE AND IMPACT OF THE STUDY This study broadens the investigation of regulatory mechanism of NHase expression and provided theoretical basis for using metal-resistant microbes to degrade pesticide in heavy metal co-contaminated environments.
Collapse
Affiliation(s)
- S Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China.,The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, People's Republic of China
| | - Z Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - J Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Z Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Zhao YX, Yang WL, Guo L, Jiang HY, Cheng X, Dai YJ. Bioinformatics of a Novel Nitrile Hydratase Gene Cluster of the N 2-Fixing Bacterium Microvirga flocculans CGMCC 1.16731 and Characterization of the Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9299-9307. [PMID: 32786837 DOI: 10.1021/acs.jafc.0c03702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microvirga flocculans CGMCC 1.16731 can degrade many cyano group-containing neonicotinoid insecticides. Here, its genome was sequenced, and a novel nitrile hydratase gene cluster was discovered in a plasmid. The NHase gene cluster (pnhF) has gene structure β-subunit 1, α-subunit, and β-subunit 2, which is different from previously reported NHase gene structures. Phylogenetic analysis of α-subunits indicated that NHases containing the three subunit (β1αβ2) structure are independent from NHases containing two subunits (αβ). pnhF was successfully expressed in Escherichia coli, and the purified PnhF could convert the nitrile-containing insecticide flonicamid to N-(4-trifluoromethylnicotinoyl)glycinamide. The enzymatic properties of PnhF were investigated using flonicamid as a substrate. Homology models revealed that amino acid residue β1-Glu56 may strongly affect the catalytic activity of PnhF. This study expands our understanding of the structures and functions of NHases and the enzymatic mechanism of the environmental fate of flonicamid.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Wen-Long Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Ling Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Huo-Yong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xi Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
13
|
Nicol E, Varga Z, Vujovic S, Bouchonnet S. Laboratory scale UV-visible degradation of acetamiprid in aqueous marketed mixtures - Structural elucidation of photoproducts and toxicological consequences. CHEMOSPHERE 2020; 248:126040. [PMID: 32041066 DOI: 10.1016/j.chemosphere.2020.126040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/13/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Acetamiprid is a neonicotinoid pesticide, which is extensively used on agricultural crops, but has a high toxic effect on beneficial insects and the human body. It is exposed to sunlight irradiation on crops but also in surface waters where it is found at a high level due to its resistance to common water treatments. The aim of the present work was to study the UV-visible photodegradation of acetamiprid, alone and in two marketed mixtures (Polysect Ultra SL® and Roseclear Ultra®). Ten photoproducts were characterized using LC-HR-MS/MS analysis. Photodegradation pathways were proposed based on the chemical structures of photoproducts and kinetic measurements; a matrix effect has been evidenced for commercial mixtures. Most photoproducts exhibit potential developmental toxicity twice higher than that of the parent compound. Regarding potential mutagenicity, all photoproducts are less toxic than acetamiprid. Estimated oral rat LD50 values show that the potential toxicities of photoproducts are similar or lower than that of acetamiprid. In vitro tests on Vibrio fischeri bacteria showed that the ecotoxicities of marketed mixtures are significantly higher than that of acetamiprid in aqueous solution; they slightly increase after UV-light exposure.
Collapse
Affiliation(s)
- Edith Nicol
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| | - Zsuzsanna Varga
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Svetlana Vujovic
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France; COMUE Normandie Université - Laboratoire ESITC, ESITC Paris, Arcueil, France
| | - Stéphane Bouchonnet
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| |
Collapse
|
14
|
Liu J, Xiong WH, Ye LY, Zhang WS, Yang H. Developing a Novel Nanoscale Porphyrinic Metal-Organic Framework: A Bifunctional Platform with Sensitive Fluorescent Detection and Elimination of Nitenpyram in Agricultural Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5572-5578. [PMID: 32348144 DOI: 10.1021/acs.jafc.0c01313] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Developing a rapid sensing platform with effective pesticide degradation capabilities integrated into a single structure and realistic application is an imminent challenge to ensure sustainable agriculture and food safety. Here, we described establishment of a bifunctional nanoscale porphyrinic metal-organic framework (MOF) probe serving as a sensor for detection of trace nitenpyram and as a photocatalyst to facilitate the pesticide degradation. Based on the signal turned "on-off", the strong fluorescence of the probe was quenched by the target, leading to the sensing range from 0.05 to 10.0 μg mL-1 and a detection limit of 0.03 μg mL-1. Given the versatile design by which the porphyrin photosensitizers were isolated subtly in the MOF to avoid self-quenching, the probe was endowed with sustainable and efficient pesticide photodegradation activity with a degradation rate of ∼95% for nitenpyram. Our work represents powerful all-in-one MOF-derived materials jointly for sensing and degrading pesticide residues in agricultural soils and other pesticide-contaminated environments.
Collapse
Affiliation(s)
- Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Hong Xiong
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Yao Ye
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Sheng Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Pang S, Lin Z, Zhang W, Mishra S, Bhatt P, Chen S. Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids. Front Microbiol 2020; 11:868. [PMID: 32508767 PMCID: PMC7248232 DOI: 10.3389/fmicb.2020.00868] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Neonicotinoids are derivatives of synthetic nicotinoids with better insecticidal capabilities, including imidacloprid, nitenpyram, acetamiprid, thiacloprid, thiamethoxam, clothianidin, and dinotefuran. These are mainly used to control harmful insects and pests to protect crops. Their main targets are nicotinic acetylcholine receptors. In the past two decades, the environmental residues of neonicotinoids have enormously increased due to large-scale applications. More and more neonicotinoids remain in the environment and pose severe toxicity to humans and animals. An increase in toxicological and hazardous pollution due to the introduction of neonicotinoids into the environment causes problems; thus, the systematic remediation of neonicotinoids is essential and in demand. Various technologies have been developed to remove insecticidal residues from soil and water environments. Compared with non-bioremediation methods, bioremediation is a cost-effective and eco-friendly approach for the treatment of pesticide-polluted environments. Certain neonicotinoid-degrading microorganisms, including Bacillus, Mycobacterium, Pseudoxanthomonas, Rhizobium, Rhodococcus, Actinomycetes, and Stenotrophomonas, have been isolated and characterized. These microbes can degrade neonicotinoids under laboratory and field conditions. The microbial degradation pathways of neonicotinoids and the fate of several metabolites have been investigated in the literature. In addition, the neonicotinoid-degrading enzymes and the correlated genes in organisms have been explored. However, few reviews have focused on the neonicotinoid-degrading microorganisms along with metabolic pathways and degradation mechanisms. Therefore, this review aimed to summarize the microbial degradation and biochemical mechanisms of neonicotinoids. The potentials of neonicotinoid-degrading microbes for the bioremediation of contaminated sites were also discussed.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|