1
|
Pakbaten Toopkanloo S, Wu HF. Self-Assembled PVP-Gd Composite Nanosheets via Ultrasound Synthesis for Targeted Acrylamide Sensing in Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4887-4903. [PMID: 39932388 PMCID: PMC11869275 DOI: 10.1021/acs.jafc.4c08460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 02/27/2025]
Abstract
Acrylamide (AM) is a recognized carcinogen and neurotoxin, posing a significant threat to food safety and human health. Therefore, developing sensitive and convenient methods for AM detection in food samples is essential. This study responds to the urgent need for sensitive and selective detection of AM, a hidden hazard in food, to safeguard public health and environmental safety. We present the development of a novel two-dimensional ultrasound-synthesized PVP-Gd composite nanosheet platform for precise AM sensing. These self-assembled nanosheets, constructed from gadolinium (Gd) and poly(vinylpyrrolidone) (PVP), exhibit remarkable stability and robust blue fluorescence, with a quantum yield of 45.01% upon excitation at 380 nm. A full factorial design was employed to optimize the synthesis process, revealing significant parameter interactions. The optimized nanosheets demonstrated a strong quenching effect upon acrylamide exposure, resulting in a high-performance acrylamide sensor with an impressively low detection limit (9.4 nM) and a broad linear response range. This innovative sensor platform offers a promising approach for environmental monitoring and food safety applications, effectively addressing the risks associated with acrylamide.
Collapse
Affiliation(s)
| | - Hui-Fen Wu
- International
PhD Program for Science, National Sun Yat-Sen
University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- School
of Pharmacy, College of Pharmacy, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
- School
of Medicine, College of Medicine, National
Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute
of Precision Medicine, National Sun Yat-Sen
University, Kaohsiung 80424, Taiwan
- Institute
of BioPharmaceutical Science, National Sun
Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
2
|
Brenes-Álvarez M, Ramírez EM, Brenes M, García-García P, Medina E, Romero C. New and Rapid Analytical Method Using HPLC-MS Detection for Acrylamide Determination in Black Ripe Olives. Foods 2023; 12:4037. [PMID: 37959156 PMCID: PMC10648916 DOI: 10.3390/foods12214037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
The presence of acrylamide, a known human carcinogen, in various heated foods raises significant concerns among consumers. Therefore, the development of a good analytical method is of paramount interest to the scientific community. Keeping this in view, a rapid, simple, reliable, and low-cost analytical method was developed and validated for acrylamide quantification in black ripe olives. The method consisted of the water extraction of the compounds from crushed olives with the addition of (13C3)acrylamide as an internal standard. The quantification was performed using high-pressure liquid chromatography and mass detection with positive electrospray ionization. The limits of detection and quantification were determined to be 4 and 11 µg/kg, respectively. The developed method exhibited excellent results in terms of accuracy (98.4-104.8%) and intra- and inter-day precision limits, both less than 20%. This new method was carried out by analyzing 15 samples of Spanish commercial black ripe olives, revealing a wide range of values, from 79 to 1068 µg/kg of fruit. The new protocol reduces the analysis time to just one hour per sample versus the minimum 24 h required by gas chromatography and mass detection, meaning that it could be a good option for the routine analysis of acrylamide in black ripe olives, and may be extendable to the analysis of this compound in other foods.
Collapse
Affiliation(s)
| | | | | | | | | | - Concepción Romero
- Food Biotechnology Department, Instituto de la Grasa (IG, CSIC), Building 46, Ctra. Utrera km 1, 41013 Seville, Spain; (M.B.-Á.); (E.M.R.); (M.B.); (P.G.-G.); (E.M.)
| |
Collapse
|
3
|
Hölzle E, Becker L, Oellig C, Granvogl M. Heat-Introduced Formation of Acrylamide in Table Olives: Analysis of Acrylamide, Free Asparagine, and 3-Aminopropionamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13508-13517. [PMID: 37647584 DOI: 10.1021/acs.jafc.3c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Acrylamide was detected in considerable amounts in black table olives. In this study, besides black, also green and naturally black table olives were investigated for their acrylamide, free asparagine, and 3-aminopropionamide contents before and after heat treatment. Acrylamide amount was 208-773 μg/kg in black table olives and did not change due to heat treatment. In green and naturally black table olives acrylamide was ≤24 μg/kg before heat treatment and rose to 1200 μg/kg afterward. Asparagine content was 0.35-35 mg/kg in all samples before heat treatment and after heat treatment with no considerable change in the range. 3-Aminopropionamide showed amounts of ≤56 μg/kg in the unheated samples and increased up to 131 μg/kg due to heat impact. However, quantified asparagine and 3-aminopropionamide amounts were insufficient in almost all samples to explain the acrylamide quantities formed due to heat treatment based on the formation via the Maillard reaction.
Collapse
Affiliation(s)
- Eva Hölzle
- Institute of Food Chemistry, Department of Food Chemistry and Analytical Chemistry, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Laura Becker
- Institute of Food Chemistry, Department of Food Chemistry and Analytical Chemistry, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Claudia Oellig
- Institute of Food Chemistry, Department of Food Chemistry and Analytical Chemistry, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Michael Granvogl
- Institute of Food Chemistry, Department of Food Chemistry and Analytical Chemistry, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| |
Collapse
|
4
|
Ciesarová Z, Kukurová K, Jelemenská V, Horváthová J, Kubincová J, Belović M, Torbica A. Asparaginase Treatment of Sea Buckthorn Berries as an Effective Tool for Acrylamide Reduction in Nutritionally Enriched Wholegrain Wheat, Rye and Triticale Biscuits. Foods 2023; 12:3170. [PMID: 37685103 PMCID: PMC10486749 DOI: 10.3390/foods12173170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Sea buckthorn pomace is a by-product of juice production, which is still rich in bioactive compounds. After drying, the pomace can be effectively used as a valuable addition to bakery products supporting their nutritional value. However, due to the high content of the amino acid asparagine in sea buckthorn, this promising material contributes to the undesirable formation of acrylamide. To reduce the risk from this potentially carcinogenic compound, enzymatic treatment of sea buckthorn with asparaginase was applied, which resulted in a substantial reduction of asparagine content from 1834 mg/kg in untreated dried sea buckthorn pomace to 89 mg/kg in enzymatically treated dried sea buckthorn pomace. 10% substitution of wholegrain cereal flour with enzymatically treated sea buckthorn pomace powder in rye and triticale biscuits resulted in a 35% reduction in acrylamide content, in the case of wholegrain wheat biscuits up to a 64% reduction, compared to biscuits with untreated sea buckthorn pomace powder. This study confirmed that treating fruit with asparaginase is an effective way to reduce health risk caused by acrylamide in biscuits enriched with nutritionally valuable fruit pomace.
Collapse
Affiliation(s)
- Zuzana Ciesarová
- National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, Slovakia; (K.K.); (V.J.); (J.H.); (J.K.)
| | - Kristína Kukurová
- National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, Slovakia; (K.K.); (V.J.); (J.H.); (J.K.)
| | - Viera Jelemenská
- National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, Slovakia; (K.K.); (V.J.); (J.H.); (J.K.)
| | - Jana Horváthová
- National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, Slovakia; (K.K.); (V.J.); (J.H.); (J.K.)
| | - Janka Kubincová
- National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, Slovakia; (K.K.); (V.J.); (J.H.); (J.K.)
| | - Miona Belović
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.B.); (A.T.)
| | - Aleksandra Torbica
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.B.); (A.T.)
| |
Collapse
|
5
|
Fan M, Xu X, Lang W, Wang W, Wang X, Xin A, Zhou F, Ding Z, Ye X, Zhu B. Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115059. [PMID: 37257344 DOI: 10.1016/j.ecoenv.2023.115059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Thermal processing is one of the important techniques for most of the plant-based food and herb medicines before consumption and application in order to meet the specific requirement. The plant and herbs are rich in amino acids and reducing sugars, and thermal processing may lead to Maillard reaction, resulting as a high risk of acrylamide pollution. Acrylamide, an organic pollutant that can be absorbed by the body through the respiratory tract, digestive tract, skin and mucous membranes, has potential carcinogenicity, neurological, genetic, reproductive and developmental toxicity. Therefore, it is significant to conduct pollution determination and risk assessment for quality assurance and security of medication. This review demonstrates state-of-the-art research of acrylamide focusing on the toxicity, formation, contamination, determination, and mitigation in taking food and herb medicine, to provide reference for scientific processing and ensure the security of consumers.
Collapse
Affiliation(s)
- Min Fan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China; Wenshui Center for Disease Control and Prevention, Luliang City, Shanxi Province 032100 PR China
| | - Xiaoying Xu
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjun Lang
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjing Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xinyu Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Angjun Xin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| |
Collapse
|
6
|
Desmarchelier A, Bebius A, Reding F, Griffin A, Ahijado Fernandez M, Beasley J, Clauzier E, Delatour T. Towards a consensus LC-MS/MS method for the determination of acrylamide in food that prevents overestimation due to interferences. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:653-665. [PMID: 35113763 DOI: 10.1080/19440049.2021.2022773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Acrylamide is prone to misquantification, and critical steps in the analytical procedures need to be identified and controlled to ensure a reliable determination. Four methods were considered to illustrate misquantification issues with acrylamide. For two methods varying by the extent of their sample preparations, cases of overestimation in cocoa samples reaching up to a 20-fold factor are shown. A second example, applied to a variety of food products, includes two other methods varying by their chromatographic conditions. As a follow up of a study conducted in 2020 about the identification of N-acetyl-ß-alanine as an interference of acrylamide in coffee, the extent of this interference was evaluated in a selection of coffee samples, cereal-based products and baby foods. The ultimate objective of this manuscript was to resolve such cases of misquantification and validate a wide scope and robust method allowing an interference free acrylamide analysis. To do so, an extraction procedure based on the EN 16618:2015 standard with water extraction and two consecutive solid phase extraction (SPE) steps was applied with modified liquid chromatographic conditions. The method was validated in coffee, cereals, baby foods, cocoa and pet foods with excellent performance in terms of recovery (97-108%) and precision (RSDr and RSDiR <12 %). The breath of scope was further proved through trueness determination in quality control materials and reference materials including French fries, potato crisps, vegetable crisps, instant coffee, infant food and biscuit (cookie), with trueness values found within a 94-107% range.
Collapse
Affiliation(s)
| | - Aude Bebius
- Société des Produits Nestlé SA, Nestlé Research and Development Orbe, Orbe, Switzerland
| | - Frédérique Reding
- Société des Produits Nestlé SA, Nestlé Research and Development Orbe, Orbe, Switzerland
| | - Ashley Griffin
- Center, Quality Management, Nestlé Quality Assurance Center, Dublin, Ohio, USA
| | | | - Jason Beasley
- Reading Scientific Services Ltd, Reading Science Centre, Reading, UK
| | - Emilie Clauzier
- Reading Scientific Services Ltd, Reading Science Centre, Reading, UK
| | - Thierry Delatour
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
7
|
Zhuang YT, Ma L, Huang H, Han L, Wang L, Zhang Y. A portable kit based on thiol-ene Michael addition for acrylamide detection in thermally processed foods. Food Chem 2022; 373:131465. [PMID: 34741969 DOI: 10.1016/j.foodchem.2021.131465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Accurate, sensitive, and selective analysis of acrylamide generated in thermally processed foods is of great significance for food safety. Herein, a novel acrylamide sensing platform is designed for both sensitive on-site colorimetric analysis and accurate UV-vis spectroscopy quantification, by integrating thiol-ene Michael addition with gold nanoparticles-mediated catalytical oxidation. The Michael addition reaction between acrylamide and glutathione efficiently alleviates glutathione-induced catalytic activity inhibition of gold nanoparticles, evoking the chromogenic reaction of H2O2-mediated 3,3',5,5'-tetramethylbenzidine. With increasing the concentration of acrylamide, the oxidation of 3,3',5,5'-tetramethylbenzidine is accelerated, presenting a series of shades from colorless to blue. The sensing platform exhibits excellent detection performance of acrylamide in the range of 0.5-175 μM with a detection limit of 0.16 μM, and is successfully employed in food samples. Especially, a portable assay kit based on the proposed platform is developed for visual determination of acrylamide, opening an avenue for smart sensors of food safety hazards.
Collapse
Affiliation(s)
- Yu-Ting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Liuyimai Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Han
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou 450000, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
|
9
|
Quesada-Valverde M, Artavia G, Granados-Chinchilla F, Cortés-Herrera C. Acrylamide in foods: from regulation and registered levels to chromatographic analysis, nutritional relevance, exposure, mitigation approaches, and health effects. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2018611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mónica Quesada-Valverde
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Fabio Granados-Chinchilla
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
10
|
Martín-Tornero E, Sánchez R, Lozano J, Martínez M, Arroyo P, Martín-Vertedor D. Characterization of Polyphenol and Volatile Fractions of Californian-Style Black Olives and Innovative Application of E-nose for Acrylamide Determination. Foods 2021; 10:foods10122973. [PMID: 34945524 PMCID: PMC8701876 DOI: 10.3390/foods10122973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
Californian-style black olives require a sterilization treatment that produces a carcinogenic contaminant, acrylamide. Thus, this compound was evaluated in two different olive cultivars using an electronic nose (E-nose). The sterilization intensity had a significant influence on the final phenol concentrations, acrylamide content, and volatile compounds. Increasing the sterilization intensity from 10 to 26 min (F0) reduced the phenol content, but it promoted acrylamide synthesis, leading to a wide range of this toxic substance. The Ester and phenol groups of volatile compounds decreased their content when the sterilization treatment increased; however, aldehyde and other volatile compound groups significantly increased their contents according to the thermal treatments. The compounds 4-ethenyl-pyridine, benzaldehyde, and 2,4-dimethyl-hexane are volatile compounds with unpleasant odours and demonstrated a high amount of influence on the differences found after the application of the thermal treatments. The “Manzanilla Cacereña” variety presented the highest amount of phenolic compounds and the lowest acrylamide content. Finally, it was found that acrylamide content is correlated with volatile compounds, which was determined using multiple linear regression analysis (R2 = 0.9994). Furthermore, the aroma of table olives was analysed using an E-nose, and these results combined with Partial Least Square (PLS) were shown to be an accurate method (range to error ratio (RER) >10 and ratio of performance to deviation (RPD) >2.5) for the indirect quantification of this toxic substance.
Collapse
Affiliation(s)
- Elísabet Martín-Tornero
- Department of Agricultural and Forestry Engineering, School of Agrarian Engineering, Universidad de Extremadura, 06007 Badajoz, Spain; (E.M.-T.); (M.M.)
| | - Ramiro Sánchez
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Jesús Lozano
- Perception and Intelligent Systems Research Group, Universidad de Extremadura, 06006 Badajoz, Spain; (J.L.); (P.A.)
- Research Institute of Agricultural Resources INURA. Avda de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
| | - Manuel Martínez
- Department of Agricultural and Forestry Engineering, School of Agrarian Engineering, Universidad de Extremadura, 06007 Badajoz, Spain; (E.M.-T.); (M.M.)
- Research Institute of Agricultural Resources INURA. Avda de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
| | - Patricia Arroyo
- Perception and Intelligent Systems Research Group, Universidad de Extremadura, 06006 Badajoz, Spain; (J.L.); (P.A.)
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain;
- Research Institute of Agricultural Resources INURA. Avda de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-01-26-64
| |
Collapse
|
11
|
Artavia G, Cortés-Herrera C, Granados-Chinchilla F. Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis. Foods 2021; 10:1081. [PMID: 34068197 PMCID: PMC8152966 DOI: 10.3390/foods10051081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
This review presents an overall glance at selected instrumental analytical techniques and methods used in food analysis, focusing on their primary food science research applications. The methods described represent approaches that have already been developed or are currently being implemented in our laboratories. Some techniques are widespread and well known and hence we will focus only in very specific examples, whilst the relatively less common techniques applied in food science are covered in a wider fashion. We made a particular emphasis on the works published on this topic in the last five years. When appropriate, we referred the reader to specialized reports highlighting each technique's principle and focused on said technologies' applications in the food analysis field. Each example forwarded will consider the advantages and limitations of the application. Certain study cases will typify that several of the techniques mentioned are used simultaneously to resolve an issue, support novel data, or gather further information from the food sample.
Collapse
Affiliation(s)
- Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | | |
Collapse
|
12
|
Sarion C, Codină GG, Dabija A. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4332. [PMID: 33921874 PMCID: PMC8073677 DOI: 10.3390/ijerph18084332] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Acrylamide is a contaminant as defined in Council Regulation (EEC) No 315/93 and as such, it is considered a chemical hazard in the food chain. The toxicity of acrylamide has been acknowledged since 2002, among its toxicological effects on humans being neurotoxicity, genotoxicity, carcinogenicity, and reproductive toxicity. Acrylamide has been classified as carcinogenic in the 2A group, with human exposure leading to progressive degeneration of the peripheral and central nervous systems characterized by cognitive and motor abnormalities. Bakery products (bread, crispbread, cakes, batter, breakfast cereals, biscuits, pies, etc.) are some of the major sources of dietary acrylamide. The review focuses on the levels of acrylamide in foods products, in particular bakery ones, and the risk that resulting dietary intake of acrylamide has on human health. The evolving legislative situation regarding the acrylamide content from foodstuffs, especially bakery ones, in the European Union is discussed underlining different measures that food producers must take in order to comply with the current regulations regarding the acrylamide levels in their products. Different approaches to reduce the acrylamide level in bakery products such as the use of asparginase, calcium salts, antioxidants, acids and their salts, etc., are described in detail.
Collapse
Affiliation(s)
| | - Georgiana Gabriela Codină
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (C.S.); (A.D.)
| | | |
Collapse
|
13
|
Martín-Vertedor D, Rodrigues N, Marx ÍM, Dias LG, Veloso AC, Pereira JA, Peres AM. Assessing acrylamide content in sterilized Californian-style black table olives using HPLC-MS-QQQ and a potentiometric electronic tongue. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|