1
|
Chen R, Li C, Zhao D, Yang G, Zeng L, Lin F, Xu H. Fabricating supramolecular pre-emergence herbicide CPAM-BPyHs for farming herbicide-resistant rice. Nat Commun 2025; 16:4347. [PMID: 40348750 PMCID: PMC12065884 DOI: 10.1038/s41467-025-59582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Controlling weeds before their emergence is crucial for minimizing their impacts on crop yield and quality. Bipyridyl herbicides (BPyHs), a class of highly effective and broad-spectrum herbicides, cannot be used as pre-emergence herbicides because they can be absorbed and inactivated by negatively charged soil after application. Here, we design and fabricate an adsorbed-but-active supramolecular pre-emergence herbicide consisting of cationic polyacrylamide and bipyridyl herbicides (CPAM-BPyHs). CPAM is a positively charged polymer. It can preferentially bind to soil particles and shift their electric potential to a more positive value. Thus, it prevents not only runoff but also inactivation of BPyHs. We also develop a BPyHs-resistant rice line by mutation of the gene encoding L-type amino acid transporter 5 (OsLAT5). Field trial results show that the weed control efficiency of CPAM-diquat for direct-seeded herbicide-resistant rice line exceeds 90%. The herbicidal activity can maintain up to one month with only one application. This work offers a method for rice weed control and provides insights into the design of pesticides to prevent soil inactivation and runoff.
Collapse
Affiliation(s)
- Ronghua Chen
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Chaozheng Li
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Di Zhao
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guili Yang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Lingda Zeng
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Fei Lin
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Muheyati M, Wu G, Li Y, Pan Z, Chen Y. Supramolecular nanotherapeutics based on cucurbiturils. J Nanobiotechnology 2024; 22:790. [PMID: 39710716 DOI: 10.1186/s12951-024-03024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Polymeric biomaterials have important applications in aiding clinical disease treatment, including drug delivery, bioimaging, and tissue engineering. Currently, conventional tumor chemotherapy faces obstacles such as poor solubility/stability, inability to target, and uncontrolled drug release in clinical trials, for which the emergence of supramolecular material therapeutics combining non-covalent interactions with conventional therapies is a very promising candidate. Due to their molecular recognition abilities with a range of biomolecules, cucurbit[n]uril (CB[n]), a type of macrocyclic receptors with robust backbones, hydrophobic cavities, and carbonyl-binding channels, have garnered a lot of attention. Therefore, this paper reviews recent advances in CB[n] material-based supramolecular therapeutics for clinical treatments, including targeted delivery applications and related imaging and sensing systems. This study also covers the distinctive benefits of CB materials for biological applications, as well as the trends and prospects of this interdisciplinary subject, based on numerous state-of-the-art research findings.
Collapse
Affiliation(s)
- Maiyier Muheyati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Guangheng Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Ziting Pan
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
- School of Basic Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
3
|
Yin H, Cheng Q, Bardelang D, Wang R. Challenges and Opportunities of Functionalized Cucurbiturils for Biomedical Applications. JACS AU 2023; 3:2356-2377. [PMID: 37772183 PMCID: PMC10523374 DOI: 10.1021/jacsau.3c00273] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 09/30/2023]
Abstract
Cucurbit[n]uril (CB[n]) macrocycles (especially CB[5] to CB[8]) have shown exceptional attributes since their discovery in 2000. Their stability, water solubility, responsiveness to several stimuli, and remarkable binding properties have enabled a growing number of biological applications. Yet, soon after their discovery, the challenge of their functionalization was set. Nevertheless, after more than two decades, a myriad of CB[n] derivatives has been described, many of them used in cells or in vivo for advanced applications. This perspective summarizes key advances of this burgeoning field and points to the next opportunities and remaining challenges to fully express the potential of these fascinating macrocycles in biology and biomedical sciences.
Collapse
Affiliation(s)
- Hang Yin
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | - Qian Cheng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | | | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| |
Collapse
|
4
|
Zou Y, Zhang Y, Liu X, Song H, Cai Q, Wang S, Yi C, Chen J. Research Progress of Benzothiazole and Benzoxazole Derivatives in the Discovery of Agricultural Chemicals. Int J Mol Sci 2023; 24:10807. [PMID: 37445983 PMCID: PMC10341659 DOI: 10.3390/ijms241310807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Benzoxazole and benzothiazole have a broad spectrum of agricultural biological activities, such as antibacterial, antiviral, and herbicidal activities, which are important fused heterocyclic scaffold structures in agrochemical discovery. In recent years, great progress has been made in the research of benzoxazoles and benzothiazoles, especially in the development of herbicides and insecticides. With the widespread use of benzoxazoles and benzothiazoles, there may be more new products containing benzoxazoles and benzothiazoles in the future. We systematically reviewed the application of benzoxazoles and benzothiazoles in discovering new agrochemicals in the past two decades and summarized the antibacterial, fungicidal, antiviral, herbicidal, and insecticidal activities of the active compounds. We also discussed the structural-activity relationship and mechanism of the active compounds. This work aims to provide inspiration and ideas for the discovery of new agrochemicals based on benzoxazole and benzothiazole.
Collapse
Affiliation(s)
- Yue Zou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (Y.Z.); (Y.Z.); (X.L.); (H.S.); (Q.C.); (S.W.)
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (Y.Z.); (Y.Z.); (X.L.); (H.S.); (Q.C.); (S.W.)
| | - Xing Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (Y.Z.); (Y.Z.); (X.L.); (H.S.); (Q.C.); (S.W.)
| | - Hongyi Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (Y.Z.); (Y.Z.); (X.L.); (H.S.); (Q.C.); (S.W.)
| | - Qingfeng Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (Y.Z.); (Y.Z.); (X.L.); (H.S.); (Q.C.); (S.W.)
| | - Sheng Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (Y.Z.); (Y.Z.); (X.L.); (H.S.); (Q.C.); (S.W.)
| | - Chongfen Yi
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China;
| | - Jixiang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (Y.Z.); (Y.Z.); (X.L.); (H.S.); (Q.C.); (S.W.)
| |
Collapse
|
5
|
Sun JD, Liu Y, Zhao Z, Yu SB, Qi QY, Zhou W, Wang H, Hu K, Zhang DW, Li ZT. Host-guest binding of tetracationic cyclophanes to photodynamic agents inhibits posttreatment phototoxicity and maintains antitumour efficacy. RSC Med Chem 2023; 14:563-572. [PMID: 36970143 PMCID: PMC10034117 DOI: 10.1039/d2md00463a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
In the past two decades, photodynamic therapy (PDT) has become an effective method for the treatment of cancer. However, the posttreatment residue of photodynamic agents (PDAs) causes long-term skin phototoxicity. Here, we apply naphthalene-derived, box-like tetracationic cyclophanes, named NpBoxes, to bind to clinically used porphyrin-based PDAs to alleviate their posttreatment phototoxicity by reducing their free content in skin tissues and 1O2 quantum yield. We show that one of the cyclophanes, 2,6-NpBox, could include the PDAs to efficiently suppress their photosensitivity for the generation of reactive oxygen species. A tumour-bearing mouse model study revealed that, when Photofrin, the most widely used PDA in clinic, was administrated at a dose corresponding to the clinical one, 2,6-NpBox of the same dose could significantly suppress its posttreatment phototoxicity on the skin induced by simulated sunlight irradiation, without imposing a negative influence on its PDT efficacy.
Collapse
Affiliation(s)
- Jian-Da Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zijian Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Ke Hu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
6
|
Wang CY, Liu YQ, Jia C, Zhang MZ, Song CL, Xu C, Hao R, Qin JC, Yang YW. An integrated supramolecular fungicide nanoplatform based on pH-sensitive metal–organic frameworks. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Hong T, Park H, An G, Song G, Lim W. Ethalfluralin induces developmental toxicity in zebrafish via oxidative stress and inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158780. [PMID: 36115403 DOI: 10.1016/j.scitotenv.2022.158780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Ethalfluralin, of dinitroaniline herbicide family, is an effective weed controller. Following residue detection in herbicide-treated fields, ethalfluralin was reported to interfere with early stages of implantation in some vertebrate species. However, the role of ethalfluralin in the development of zebrafish embryos has not been elucidated yet. Therefore, in the present study, we investigated the morphological and physiological changes that occur in the embryonic development of zebrafish due to ethalfluralin exposure. Results indicated that ethalfluralin decreased survival rate along with reduction in the hatching ratio and heartbeat. It was observed to cause edema in the heart and yolk sac, and apoptosis in the anterior region of the developing zebrafish larvae; as visualized through acridine orange and TUNEL staining. In addition, ethalfluralin increased the expression of the apoptosis-associated genes including tp53, cyc1, casp8, casp9, and casp3. The Seahorse Mito Stress analysis revealed that ethalfluralin slightly reduced mitochondrial respiration in live zebrafish embryos. Reactive oxygen species (ROS) production was also observed to be elevated in zebrafish larvae in response to ethalfluralin. Treatment with ethalfluralin decreased blood vessel formation in brain and intestine in flk1 transgenic zebrafish embryos. The decrease in angiogenesis related gene expression was specifically observed in vegfc, flt1, and kdrl, and in the intestinal vasculature related genes apoa4a, aqp3, fabp2, and vil1. Moreover, an increase in inflammatory genes such as cox2a, cox2b, cxcl-c1c, il8, mcl1a, mcl1b, and nf-κb was observed using real-time PCR analysis. Collectively, these results indicate that oxidative stress generated by exposure to ethalfluralin induced ROS generation, apoptosis, inflammation and anti-angiogenic effects, and therefore, ethalfluralin may be toxic to the development of zebrafish embryos.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
8
|
Che S, Peng X, Zhuge Y, Chen X, Zhou C, Fu H, She Y. Fluorescent and Colorimetric Ionic Probe Based on Fluorescein for the Rapid and On-Site Detection of Paraquat in Vegetables and the Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15390-15400. [PMID: 36417496 DOI: 10.1021/acs.jafc.2c05980] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Detection of pesticide paraquat (PQ) is of considerable significance to ensure food safety, and its rapid and on-site detection is still a challenge. Aimed at the ion characteristics of PQ, an "enrichment and detection" strategy was proposed to improve the sensitivity through electrostatic attractions, and the ion characteristic of probes was adopted to increase the portability through avoiding aggregation-caused quenching effects in the paper strips. Herein, a novel anion-functionalized ionic liquid (IL) probe with a large conjugated plane and rich π-electrons ([Fluo][P66614]2) was designed as a fluorescent and colorimetric dual-channel probe to sensitively and rapidly detect trace amounts of PQ in vegetables and the environment. The proposed probe exhibited good linearity with a detection limit of 64.0 nM in the PQ concentration range of 0.3-7.0 μM (fluorometry) and 0.1 μM in that of 0.1-8.0 μM (colorimetry), respectively. In addition, it displayed a rapid fluorescence quenching response from green to dark (<5 s) and excellent anti-interference (among 23 other pesticides) due to dual effects of electrostatic attraction and π-π stacking. Most importantly, the lipophilic IL probe could be applied in real vegetables and environmental samples with a satisfying recovery rate of 98-103% and assembled into a handy paper strip that achieved the visual semiquantitative detection of PQ. This ionic probe provides a feasible approach for rapidly and conveniently detecting PQ for ensuring agricultural and food safety and opens a new avenue to detect ion-responsive analytes in real complex samples by an "enrichment and detection" strategy.
Collapse
Affiliation(s)
- Siying Che
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Xiutan Peng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Yiwan Zhuge
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Xinlan Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - ChunSong Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Haiyan Fu
- College of Pharmacy, South-Central University for Nationalities, Wuhan430074, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| |
Collapse
|
9
|
Neurovascular Unit-Derived Extracellular Vesicles: From Their Physiopathological Roles to Their Clinical Applications in Acute Brain Injuries. Biomedicines 2022; 10:biomedicines10092147. [PMID: 36140248 PMCID: PMC9495841 DOI: 10.3390/biomedicines10092147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) form a heterogeneous group of membrane-enclosed structures secreted by all cell types. EVs export encapsulated materials composed of proteins, lipids, and nucleic acids, making them a key mediator in cell–cell communication. In the context of the neurovascular unit (NVU), a tightly interacting multicellular brain complex, EVs play a role in intercellular communication and in maintaining NVU functionality. In addition, NVU-derived EVs can also impact peripheral tissues by crossing the blood–brain barrier (BBB) to reach the blood stream. As such, EVs have been shown to be involved in the physiopathology of numerous neurological diseases. The presence of NVU-released EVs in the systemic circulation offers an opportunity to discover new diagnostic and prognostic markers for those diseases. This review outlines the most recent studies reporting the role of NVU-derived EVs in physiological and pathological mechanisms of the NVU, focusing on neuroinflammation and neurodegenerative diseases. Then, the clinical application of EVs-containing molecules as biomarkers in acute brain injuries, such as stroke and traumatic brain injuries (TBI), is discussed.
Collapse
|
10
|
Shan PH, Hu JH, Liu M, Tao Z, Xiao X, Redshaw C. Progress in host–guest macrocycle/pesticide research: Recognition, detection, release and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Tang ZD, Sun XM, Huang TT, Liu J, Shi B, Yao H, Zhang YM, Wei TB, Lin Q. Pillar[n]arenes-based materials for detection and separation of pesticides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Tsutsumi H, Ohata T, Nakashima R, Ikeda H. Inclusion complexation and self-association of cucurbit[ n]uril ( n = 6, 7) and diquat under pseudo-physiological conditions. NEW J CHEM 2022. [DOI: 10.1039/d1nj06170d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation and steric structure of the inclusion complex of cucurbit[n]uril (CB[n]; n = 6, 7) and diquat (DQ) were investigated through NMR measurements under the pH conditions of human pseudo-gastric or body fluids, in physiological saline.
Collapse
Affiliation(s)
- Hiroyuki Tsutsumi
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Tomonori Ohata
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Rie Nakashima
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Hirohito Ikeda
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| |
Collapse
|
13
|
Saleh N, Al-Jassabi S, Eid AH, Nau WM. Cucurbituril Ameliorates Liver Damage Induced by Microcystis aeruginosa in a Mouse Model. Front Chem 2021; 9:660927. [PMID: 33937198 PMCID: PMC8079933 DOI: 10.3389/fchem.2021.660927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Microcystis aeruginosa is a cyanobacterium that produces a variety of cyclic heptapeptide toxins in freshwater. The protective effects of the macromolecular container cucurbit[7]uril (CB7) were evaluated using mouse models of cyanotoxin-induced liver damage. Biochemical analysis of liver function was performed to gauge the extent of liver damage after exposure to cyanobacterial crude extract [CCE; LD50 = 35 mg/kg body weight; intraperitoneal (i.p.)] in the absence or presence of CB7 (35 mg/kg body weight, i.p.). CCE injection resulted in liver enlargement, potentiated the activities of alanine aminotransferase (ALT) and glutathione S-transferase (GST), increased lipid peroxidation (LPO), and reduced protein phosphatase 1 (PP1) activity. CCE-induced liver enlargement, ALT and GST activities, and LPO were significantly reduced when CB7 was coadministered. Moreover, the CCE-induced decline of PP1 activity was also ameliorated in the presence of CB7. Treatment with CB7 alone did not affect liver function, which exhibited a dose tolerance of 100 mg/kg body wt. Overall, our results illustrated that the addition of CB7 significantly reduced CCE-induced hepatotoxicity (P < 0.05).
Collapse
Affiliation(s)
- Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates (UAE) University, Al Ain, United Arab Emirates
| | - Saad Al-Jassabi
- Faculty of Medicine, Unishams University, Kuala Ketil, Malaysia
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Werner M Nau
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
14
|
da Silva AK, Diniz LF, Tenorio JC, Nazário CED, Ribeiro C, Carvalho Jr PS. Driving a sustainable application of s-triazine ametryn and atrazine herbicides through multicomponent crystals with improved solubility. CrystEngComm 2021. [DOI: 10.1039/d1ce00356a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Engineered multicomponent crystals of Atrazine and ametryn herbicides have shown enhanced solubility and can be an alternative for the production of safe and eco-friendly agrochemical products.
Collapse
Affiliation(s)
| | - Luan F. Diniz
- Laboratório de Controle de Qualidade
- Departamento de Produtos Farmacêuticos
- Faculdade de Farmácia
- Universidade Federal de Minas Gerais
- Belo Horizonte
| | - Juan C. Tenorio
- Instituto de Química
- Universidade Estadual de Campinas
- Campinas
- Brazil
| | - Carlos E. D. Nazário
- Instituto de Química
- Universidade Federal do Mato Grosso do Sul
- Campo Grande
- Brazil
| | - Caue Ribeiro
- National Nanotechnology Laboratory for Agribusiness (LNNA)
- EMBRAPA Instrumentação
- São Carlos
- Brazil
| | | |
Collapse
|
15
|
Yin H, Zhang X, Wei J, Lu S, Bardelang D, Wang R. Recent advances in supramolecular antidotes. Theranostics 2021; 11:1513-1526. [PMID: 33391548 PMCID: PMC7738896 DOI: 10.7150/thno.53459] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Poisons always have fascinated humankind. Initially considered as deleterious or hazardous substances, the modern era has witnessed the controlled utilization of dangerous poisons in medicine and cosmetics. Simultaneously, antidotes have become crucial as reversal agents to counteract the effects of a poison, and they are also used today to positively cancel the benefits of a poison after use. Currently, the majority of poisons are composed of small molecules. This review focuses on recent developments to reverse or prevent toxic effects of poisons by encapsulation in host molecules. Cyclodextrins, cucurbiturils, acyclic cucurbituril derivatives, calixarenes, and pillararenes, have been reported to largely impact the effects of toxic compounds, thus extending the current paradigm of small molecule antidotes by adding a new family of macrocyclic compounds to the current arsenal of antidotes. Along this line of research, endogenous "harmful" species are also sequestered by one or more of these supramolecular host molecules, expanding the potential of supramolecular antidotes to diverse therapeutic areas.
Collapse
Affiliation(s)
- Hang Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiangjun Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | | | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
16
|
Tang M, Bian Q, Zhang YM, Arif M, Luo Q, Men S, Liu Y. Sequestration of pyridinium herbicides in plants by carboxylated pillararenes possessing different alkyl chains. RSC Adv 2020; 10:35136-35140. [PMID: 35515697 PMCID: PMC9056940 DOI: 10.1039/d0ra06657e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022] Open
Abstract
We report that the sequestration of pyridinium-containing herbicides can be achieved on plant foliage through the strong supramolecular complexation with water-soluble pillararenes. The host–guest interaction appears to exert a protective effect on the plant growth, thus holding great promise in agricultural application. We report that the sequestration of pyridinium-containing herbicides can be achieved on plant foliage through the strong supramolecular complexation with water-soluble pillararenes.![]()
Collapse
Affiliation(s)
- Mian Tang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| | - Qiang Bian
- National Pesticide Engineering Research Center, College of Chemistry, Nankai University Tianjin 300071 China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| | - Muhammad Arif
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences Tianjin 300071 China
| | - Qiong Luo
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences Tianjin 300071 China
| | - Shuzhen Men
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences Tianjin 300071 China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
17
|
pH-Responsive supramolecular DOX-dimer based on cucurbit[8]uril for selective drug release. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Nagy K, Duca RC, Lovas S, Creta M, Scheepers PTJ, Godderis L, Ádám B. Systematic review of comparative studies assessing the toxicity of pesticide active ingredients and their product formulations. ENVIRONMENTAL RESEARCH 2020; 181:108926. [PMID: 31791711 DOI: 10.1016/j.envres.2019.108926] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 05/24/2023]
Abstract
Humans are exposed to complex chemical mixtures, such as pesticides. Although the need for the assessment of health and environmental hazards deriving from the interactions between various substances found in commercial pesticide formulations is becoming increasingly recognized, the approval of pesticide products is still mostly limited to determining the toxicity of the individual ingredients ignoring the possible combined effects in mixtures. The objective of this study was to systematically review the literature of in vitro and in vivo studies that simultaneously examine the toxicity of pesticide product formulations and their declared active ingredients to compare their toxicity to human health and to the environment. Two electronic databases were searched for studies that assessed the health effects of active pesticide ingredients and their product formulations. The literature search was performed with a combination of the following terms: "pesticide", "formulation", "commercial product", "commercial pesticide" and "health". After screening by predefined inclusion and exclusion criteria, quality and reliability assessment of eligible publications was conducted by use of the ToxRTool. Two investigators independently screened the identified publications and extracted results from eligible studies. Our search yielded 36 toxicity studies; 23 studies investigated herbicides, 15 examined insecticides and 4 focused on fungicides. Twenty-four studies reported increased toxicity of the product formulations versus their active ingredients, which, in most cases, were attributed to the presence of adjuvants in the formulations. A significant number (n = 10) of studies focused on the comparative testing of glyphosate and glyphosate-based herbicides, and six of them concluded that Roundup, the dominant product formulation of glyphosate, is more toxic than the active ingredient alone. We identified only 8 studies demonstrating reduced toxicity of product formulations in relation to the active ingredient that might be due to a potential antagonistic effect between the constituents. The results of this review demonstrate the inadequacy of current EU testing requirements for assessing the health hazards of pesticide product formulations based mainly on the evaluation of the individual ingredients and of at least one representative use and formulation. Ignoring the possible risks deriving from the interaction between the active and other ingredients of various commercial pesticide product formulations might result in the misinterpretation of its toxicological profile. At EU level efforts are currently made to address this issue. In this context, we recommend that all product formulations should be fully assessed during the authorization process.
Collapse
Affiliation(s)
- Károly Nagy
- Division of Occupational Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.
| | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Szabolcs Lovas
- Division of Occupational Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary; Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Matteo Creta
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, 3001, Heverlee, Belgium
| | - Balázs Ádám
- Division of Occupational Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|