1
|
Xu K, Fu H, Chen Q, Sun R, Li R, Zhao X, Zhou J, Wang X. Engineering thermostability of industrial enzymes for enhanced application performance. Int J Biol Macromol 2025; 291:139067. [PMID: 39730046 DOI: 10.1016/j.ijbiomac.2024.139067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Thermostability is a key factor for the industrial application of enzymes. This review categorizes enzymes by their applications and discusses the importance of engineering thermostability for practical use. It summarizes fundamental theories and recent advancements in enzyme thermostability modification, including directed evolution, semi-rational design, and rational design. Directed evolution uses high-throughput screening to generate random mutations, while semi-rational design combines hotspot identification with screening. Rational design focuses on key residues to enhance stability by improving rigidity, foldability, and reducing aggregation. The review also covers rational strategies like engineering folding energy, surface charge, machine learning methods, and consensus design, along with tools that support these approaches. Practical examples are critically assessed to highlight the benefits and limitations of these strategies. Finally, the challenges and potential contributions of artificial intelligence in enzyme thermostability engineering are discussed.
Collapse
Affiliation(s)
- Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Haoran Fu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiming Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ruoxi Sun
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ruosong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinyi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Liu Z, Guo X, Xu Y, Wu J. Thermostability Enhancement of Tagatose 4-Epimerase through Protein Engineering and Whole-Cell Immobilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1449-1457. [PMID: 39752562 DOI: 10.1021/acs.jafc.4c08630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
d-Tagatose, a rare sugar endowed with a low-calorie property, superior taste quality, and probiotic functionality, has garnered significant research attention. However, the prevailing biological production methods relying on β-galactosidase and l-arabinose isomerase face challenges including high cost and suboptimal conversion efficiency. Consequently, it is of great research significance to find efficient alternative routes for d-tagatose synthesis. Previously, Thermotoga petrophila tagaturonate 3-epimerase was modified to function as tagatose 4-epimerase (T4E) enabling the direct conversion of d-fructose to d-tagatose. In this study, T4E was further engineered through directed evolution, specifically targeting the enhancement of its thermostability for application. This endeavor yielded promising T4E variants with superiority over those of the original enzyme. T4E I430P exhibits a half-life (t1/2) at 70 °C that is 1.83-fold that of T4E, with an increased melting temperature (Tm) of 5.1 °C compared to T4E. Additionally, T4E G90S/T272A/I430P demonstrated a 21.4% increase in specific activity compared to T4E. At 70 °C, its t1/2 was 1.69-fold that of T4E, and its Tm is 2.9 °C higher than T4E. Furthermore, whole-cell immobilization integrating these engineered T4E variants into a robust biocatalytic system was employed. This innovative approach not only underscores the practical feasibility of modifying enzymes through directed evolution but also establishes a foundation for the cost-effective, large-scale production of d-tagatose.
Collapse
Affiliation(s)
- Zhanzhi Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xuehong Guo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Li L, Liu X, Bai Y, Yao B, Luo H, Tu T. High-Throughput Screening Techniques for the Selection of Thermostable Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3833-3845. [PMID: 38285533 DOI: 10.1021/acs.jafc.3c07554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The acquisition of a thermostable enzyme is an indispensable prerequisite for its successful implementation in industrial applications and the development of novel functionalities. Various protein engineering approaches, including rational design, semirational design, and directed evolution, have been employed to enhance thermostability. However, all of these approaches require sensitive and reliable high-throughput screening (HTS) technologies to efficiently and rapidly identify variants with improved properties. While numerous reviews focus on modification strategies for enhancing enzyme thermostability, there is a dearth of literature reviewing HTS methods specifically aimed at this objective. Herein, we present a comprehensive overview of various HTS methods utilized for modifying enzyme thermostability across different screening platforms. Additionally, we highlight significant recent examples that demonstrate the successful application of these methods. Furthermore, we address the technical challenges associated with HTS technologies used for screening thermostable enzyme variants and discuss valuable perspectives to promote further advancements in this field. This review serves as an authoritative reference source offering theoretical support for selecting appropriate screening strategies tailored to specific enzymes with the aim of improving their thermostability.
Collapse
Affiliation(s)
- Lanxue Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Xi S, Ban X, Kong H, Li C, Gu Z, Li Z. Conserved residues at the family and subfamily levels determine enzyme activity and substrate binding in glycoside hydrolase family 13. Int J Biol Macromol 2023; 253:126980. [PMID: 37729992 DOI: 10.1016/j.ijbiomac.2023.126980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/24/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Site-directed mutagenesis is a valuable strategy for modifying enzymes, but the lack of understanding of conserved residues regulating glycosidase function hinders enzyme design. We analyzed 1662 enzyme sequences to identify conserved amino acids in maltohexaose-forming amylase at both family and subfamily levels. Several conserved residues at the family level (G37, P45, R52, Y57, D101, V103, H106, G230, R232, D234, E264, H330, D331, and G360) were found, mutations of which resulted in reduced enzyme activity or inactivation. At the subfamily level, several conserved residues (L65, E67, F68, D111, E114, R126, R147, F154, W156, F161, G163, D165, W218H, V342, W345, and F346) were identified, which primarily facilitate substrate binding in the enzyme's active site, as shown by molecular dynamics and kinetic assays. Our findings provide critical insights into conserved residues essential for catalysis and can inform targeted enzyme design in protein engineering.
Collapse
Affiliation(s)
- Shixia Xi
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Haocun Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
5
|
Sardiña-Peña AJ, Mesa-Ramos L, Iglesias-Figueroa BF, Ballinas-Casarrubias L, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Flores-Holguín NR, Arévalo-Gallegos S, Rascón-Cruz Q. Analyzing Current Trends and Possible Strategies to Improve Sucrose Isomerases' Thermostability. Int J Mol Sci 2023; 24:14513. [PMID: 37833959 PMCID: PMC10572972 DOI: 10.3390/ijms241914513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their ability to produce isomaltulose, sucrose isomerases are enzymes that have caught the attention of researchers and entrepreneurs since the 1950s. However, their low activity and stability at temperatures above 40 °C have been a bottleneck for their industrial application. Specifically, the instability of these enzymes has been a challenge when it comes to their use for the synthesis and manufacturing of chemicals on a practical scale. This is because industrial processes often require biocatalysts that can withstand harsh reaction conditions, like high temperatures. Since the 1980s, there have been significant advancements in the thermal stabilization engineering of enzymes. Based on the literature from the past few decades and the latest achievements in protein engineering, this article systematically describes the strategies used to enhance the thermal stability of sucrose isomerases. Additionally, from a theoretical perspective, we discuss other potential mechanisms that could be used for this purpose.
Collapse
Affiliation(s)
- Amado Javier Sardiña-Peña
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Liber Mesa-Ramos
- Laboratorio de Microbiología III, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico;
| | - Blanca Flor Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Lourdes Ballinas-Casarrubias
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Tania Samanta Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Edward Alexander Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Norma Rosario Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| |
Collapse
|
6
|
Sun X, Yang J, Fu X, Zhao X, Zhen J, Song H, Xu J, Zheng H, Bai W. Trehalose Production Using Three Extracellular Enzymes Produced via One-Step Fermentation of an Engineered Bacillus subtilis Strain. Bioengineering (Basel) 2023; 10:977. [PMID: 37627862 PMCID: PMC10451709 DOI: 10.3390/bioengineering10080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
At present, the double-enzyme catalyzed method using maltooligosyltrehalose synthase (MTSase) and maltooligosyltrehalose trehalohydrolase (MTHase) is the mainstream technology for industrial trehalose production. However, MTSase and MTHase are prepared mainly using the heterologous expression in the engineered Escherichia coli strains so far. In this study, we first proved that the addition of 3 U/g neutral pullulanase PulA could enhance the trehalose conversion rate by 2.46 times in the double-enzyme catalyzed system. Then, a CBM68 domain was used to successfully assist the secretory expression of MTSase and MTHase from Arthrobacter ramosus S34 in Bacillus subtilis SCK6. At the basis, an engineered strain B. subtilis PSH02 (amyE::pulA/pHT43-C68-ARS/pMC68-ARH), which co-expressed MTSase, MTHase, and PulA, was constructed. After the 24 h fermentation of B. subtilis PSH02, the optimum ratio of the extracellular multi-enzymes was obtained to make the highest trehalose conversion rate of 80% from 100 g/L maltodextrin. The high passage stability and multi-enzyme preservation stability made B. subtilis PSH02 an excellent industrial production strain. Moreover, trehalose production using these extracellular enzymes produced via the one-step fermentation of B. subtilis PSH02 would greatly simplify the procedure for multi-enzyme preparation and be expected to reduce production costs.
Collapse
Affiliation(s)
- Xi Sun
- College of Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China; (X.S.); (J.Y.)
| | - Jun Yang
- College of Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China; (X.S.); (J.Y.)
| | - Xiaoping Fu
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.F.); (H.S.); (J.X.)
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xingya Zhao
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (J.Z.)
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jie Zhen
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (J.Z.)
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Song
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.F.); (H.S.); (J.X.)
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (J.Z.)
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianyong Xu
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.F.); (H.S.); (J.X.)
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (J.Z.)
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongchen Zheng
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.F.); (H.S.); (J.X.)
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (J.Z.)
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenqin Bai
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.F.); (H.S.); (J.X.)
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
7
|
Rao D, Huo R, Yan Z, Guo Z, Liu W, Lu M, Luo H, Tao X, Yang W, Su L, Chen S, Wang L, Wu J. Multiple approaches of loop region modification for thermostability improvement of 4,6-α-glucanotransferase from Limosilactobacillus fermentum NCC 3057. Int J Biol Macromol 2023; 233:123536. [PMID: 36740130 DOI: 10.1016/j.ijbiomac.2023.123536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
4,6-α-glucanotransferase (4,6-α-GT), as a member of the glycoside hydrolase 70 (GH70) family, converts starch/maltooligosaccharides into α,1-6 bond-containing α-glucan and possesses potential applications in food, medical and related industries but does not satisfy the high-temperature requirement due to its poor thermostability. In this study, a 4,6-α-GT (ΔGtfB) from Limosilactobacillus fermentum NCC 3057 was used as a model enzyme to improve its thermostability. The loops of ΔGtfB as the target region were optimized using directed evolution, sequence alignment, and computer-aided design. A total of 11 positive mutants were obtained and iteratively combined to obtain a combined mutant CM9, with high resistance to temperature (50 °C). The activity of mutant CM9 was 2.08-fold the activity of the wild type, accompanied by a 5 °C higher optimal temperature, a 5.76 °C higher melting point (Tm, 59.46 °C), and an 11.95-fold longer half-life time (t1/2). The results showed that most of the polar residues in the loop region of ΔGtfB are mutated into rigid proline residues. Molecular dynamics simulation demonstrated that the root mean square fluctuation of CM9 significantly decreased by "Breathing" movement reduction of the loop region. This study provides a new strategy for improving the thermostability of 4,6-α-GT through rational loop region modification.
Collapse
Affiliation(s)
- Deming Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Runtian Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhengfei Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhiyong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weiqiong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mengwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weikang Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
8
|
Mondal S, Mondal K, Halder SK, Thakur N, Mondal KC. Microbial Amylase: Old but still at the forefront of all major industrial enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Thermostability engineering of industrial enzymes through structure modification. Appl Microbiol Biotechnol 2022; 106:4845-4866. [PMID: 35804158 DOI: 10.1007/s00253-022-12067-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 01/14/2023]
Abstract
Thermostability is an essential requirement of enzymes in the industrial processes to catalyze the reactions at high temperatures; thus, enzyme engineering through directed evolution, semi-rational design and rational design are commonly employed to construct desired thermostable mutants. Several strategies are implemented to fulfill enzymes' thermostability demand including decreasing the entropy of the unfolded state through substitutions Gly → Xxx or Xxx → Pro, hydrogen bond, salt bridge, introducing two different simultaneous interactions through single mutant, hydrophobic interaction, filling the hydrophobic cavity core, decreasing surface hydrophobicity, truncating loop, aromatic-aromatic interaction and introducing positively charged residues to enzyme surface. In the current review, horizons about compatibility between secondary structures and substitutions at preferable structural positions to generate the most desirable thermostability in industrial enzymes are broadened. KEY POINTS: • Protein engineering is a powerful tool for generating thermostable industrial enzymes. • Directed evolution and rational design are practical approaches in enzyme engineering. • Substitutions in preferable structural positions can increase thermostability.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
Enhanced Thermostability of Pseudomonas nitroreducens Isoeugenol Monooxygenase by the Combinatorial Strategy of Surface Residue Replacement and Consensus Mutagenesis. Catalysts 2021. [DOI: 10.3390/catal11101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vanillin has many applications in industries. Isoeugenol monooxygenase (IEM) can catalyze the oxidation of isoeugenol to vanillin in the presence of oxygen under mild conditions. However, the low thermal stability of IEM limits its practical application in the biosynthesis of natural vanillin. Herein, two rational strategies were combined to improve the thermostability of IEM from Pseudomonas nitroreducens Jin1. Two variants (K83R and K95R) with better thermostability and one mutant (G398A) with higher activity were identified from twenty candidates based on the Surface Residue Replacement method. According to the Consensus Mutagenesis method, one mutant (I352R) with better thermostability and another mutant (L273F) with higher activity were also identified from nine candidates. After combinatorial mutation, a triple mutant K83R/K95R/L273F with the best thermostability and catalytic efficiency was generated. Compared with the wild-type IEM, the thermal inactivation half-lives (t1/2) of K83R/K95R/L273F at 25 °C, 30 °C, and 35 °C increased 2.9-fold, 11.9-fold, and 24.7-fold, respectively. Simultaneously, it also exhibited a 4.8-fold increase in kcat, leading to a 1.2-fold increase in catalytic efficiency (kcat/Km). When the whole cell of K83R/K95R/L273F was applied to the biotransformation of isoeugenol on preparative scale, the vanillin concentration reached 240.1 mM with space-time yield of 109.6 g/L/d, and vanillin was achieved in 77.6% isolated yield and >99% purity.
Collapse
|
11
|
Huang X, Jiang B, Chen J, Zhang T, Zheng L. Enzymatic Preparation of Non‐Reducing Oligosaccharides from Maltodextrins and Nigerooligosaccharides. STARCH-STARKE 2021. [DOI: 10.1002/star.202100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xia Huang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu 214122 China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu 214122 China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu 214122 China
| | - Luhua Zheng
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
12
|
Zheng L, Jiang B, Chen J, Zhang T, Gu X, Pan Y. Efficient biotransformation and synergetic mechanism of dual-enzyme cascade reaction in nonreducing maltoheptaose synthesis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Xu S, Qi X, Gao S, Zhang Y, Wang H, Shao Y, Yang Y, An Y. Modification of DNA regions with metagenomic DNA fragments (MDRMDF): A convenient strategy for efficient protein engineering. Biochimie 2021; 187:75-81. [PMID: 34051307 DOI: 10.1016/j.biochi.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 10/25/2022]
Abstract
In this study, we have established a convenient and efficient approach named Modification of DNA Regions with Metagenomic DNA Fragments (MDRMDF) for protein engineering. Degenerate primers were designed corresponding to conserved regions of the gene of interest which were used for amplification of fragments with template of the metagenomic DNA. The resulting PCR products were used to replace the corresponding regions of the gene of interest to introduce modified gene for function-based screening. Therefore, this method can make full use of the metagenomic DNA sequences with unknown metagenomic gene information for efficient protein engineering. The β-xylosidase BH3683 was used to construct a MDRMDF library which was screened with a newly designed p-NPX-M9 medium-based strategy. As a result, a mutant protein Xyl-M56 showing high activity, improved pH stability and higher tolerance to organic solvents was obtained which may have potential for industrial application. The MDRMDF method may find wide application in enzyme engineering, metabolic engineering and other fields, especially offering a new methodological option for the directed evolution of proteins.
Collapse
Affiliation(s)
- Shumin Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yifeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongling Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yilun Shao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yao Yang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
14
|
Contreras F, Nutschel C, Beust L, Davari MD, Gohlke H, Schwaneberg U. Can constraint network analysis guide the identification phase of KnowVolution? A case study on improved thermostability of an endo-β-glucanase. Comput Struct Biotechnol J 2020; 19:743-751. [PMID: 33552446 PMCID: PMC7822948 DOI: 10.1016/j.csbj.2020.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023] Open
Abstract
Cellulases are industrially important enzymes, e.g., in the production of bioethanol, in pulp and paper industry, feedstock, and textile. Thermostability is often a prerequisite for high process stability and improving thermostability without affecting specific activities at lower temperatures is challenging and often time-consuming. Protein engineering strategies that combine experimental and computational are emerging in order to reduce experimental screening efforts and speed up enzyme engineering campaigns. Constraint Network Analysis (CNA) is a promising computational method that identifies beneficial positions in enzymes to improve thermostability. In this study, we compare CNA and directed evolution in the identification of beneficial positions in order to evaluate the potential of CNA in protein engineering campaigns (e.g., in the identification phase of KnowVolution). We engineered the industrially relevant endoglucanase EGLII from Penicillium verruculosum towards increased thermostability. From the CNA approach, six variants were obtained with an up to 2-fold improvement in thermostability. The overall experimental burden was reduced to 40% utilizing the CNA method in comparison to directed evolution. On a variant level, the success rate was similar for both strategies, with 0.27% and 0.18% improved variants in the epPCR and CNA-guided library, respectively. In essence, CNA is an effective method for identification of positions that improve thermostability.
Collapse
Affiliation(s)
- Francisca Contreras
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Christina Nutschel
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Laura Beust
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
15
|
Exploiting the activity-stability trade-off of glucose oxidase from Aspergillus niger using a simple approach to calculate thermostability of mutants. Food Chem 2020; 342:128270. [PMID: 33069526 DOI: 10.1016/j.foodchem.2020.128270] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Glucose oxidase (Gox) is a biocatalyst that is widely applied in the food industry, as well as other biotechnological industries. However, the industrial application of Gox is hampered by its low thermostability and activity. Here, we aimed to improve the thermostability of GoxM4 from Aspergillus niger without reducing its activity due to the activity-stability trade-off. A simple and effective approach combining enzyme activity and structure stability was adopted to evaluate the thermostability of GoxM4 and its mutants. After four rounds of computer-aided rational design, the best mutant, GoxM8, was obtained. The melting temperature (Tm) of GoxM8 was increased by 9 °C compared with GoxM4. The catalytic efficiency of GoxM8 was similar to GoxM4, suggesting that the enzyme activity-stability trade-off was counteracted. To explore its mechanism, we performed molecular dynamics simulations of GoxM4 and its mutants. Our findings provided a typical example for researching the enzyme activity-stability trade-off.
Collapse
|
16
|
Chen C, Su L, Wu L, Zhou J, Wu J. Enhanced the catalytic efficiency and thermostability of maltooligosyltrehalose synthase from Arthrobacter ramosus by directed evolution. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Su L, Yao K, Wu J. Improved Activity of Sulfolobus acidocaldarius Maltooligosyltrehalose Synthase through Directed Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4456-4463. [PMID: 32227942 DOI: 10.1021/acs.jafc.0c00948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Maltooligosyltrehalose synthase (MTSase) is a key enzyme for the production of trehalose from starch. Thermophilic MTSases offer advantages for trehalose production but suffer from low yield. In this study, directed evolution was used to increase the production of Sulfolobus acidocaldarius MTSase (SaMTSase) in Escherichia coli. Mutant libraries constructed using error-prone polymerase chain reaction were assessed using high-throughput activity assays. Three mutants with enhanced activities were obtained, the best of which (mutant D-4) exhibited 2.4 times greater activity than wild-type SaMTSase. The specific activity and catalytic efficiency of D-4 were also greater than those of wild-type SaMTSase. The D-4 activity (624.7 U·mL-1) produced in a 3 L fermenter was 2.0 times greater than that of wild-type SaMTSase. Because the same trehalose yield was obtained using an equal amount of either D-4 or wild-type SaMTSase activity, using D-4 will significantly lower the cost of trehalose production. The activities of the individual mutations present in the three SaMTSase mutants obtained using directed evolution were analyzed. Mutants F284V and T439A exhibited the greatest increases in enzyme activity. Homology models suggested that the decreased side-chain size, weakened hydrophobicity, and decreased interaction might enhance the flexibility of the loop containing catalytic residue Asp443, which was conducive to catalysis.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kailin Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
18
|
Gao X, Liu E, Yin Y, Yang L, Huang Q, Chen S, Ho CT. Enhancing Activities of Salt-Tolerant Proteases Secreted by Aspergillus oryzae Using Atmospheric and Room-Temperature Plasma Mutagenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2757-2764. [PMID: 32026695 DOI: 10.1021/acs.jafc.9b08116] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aspergillus oryzae 3.042 was mutagenized using atmospheric and room-temperature plasma (ARTP) technology to enhance its salt-tolerant proteases activity. Compared to the starting strain, mutant H8 subjected to 180 s of ARTP treatment exhibited excellent genetic stability (15 generations), growth rate, and significantly increased activities of neutral proteases, alkaline proteases, and aspartyl aminopeptidase during fermentation. Mutant H8 significantly enhanced the contents of 1-5 kDa peptides, aspartic acid, serine, threonine, and cysteine in soy sauce by 16.61, 7.69, 17.30, 8.61, and 45.00%, respectively, but it had no effects on the contents of the other 14 free amino acids (FAAs) due to its slightly enhanced acidic proteases activity. Analyses of transcriptional expressions of salt-tolerant alkaline protease gene (AP, gi: 217809) and aspartyl aminopeptidase gene (AAP, gi: 6165646) indicated that their expression levels were increased by approximately 30 and 27%, respectively. But no mutation was found in the sequences of AP and AAP expression cassettes, suggesting that the increased activities of proteases in mutant H8 should be partially attributed to the increased expression of proteases. ARTP technology showed great potential in enhancing the activities of salt-tolerant proteases from A. oryzae.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ermeng Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yiyun Yin
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lixin Yang
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Sui Chen
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|