1
|
Kawada K, Takahashi I, Takei S, Nomura A, Seto Y, Fukui K, Asami T. The Evaluation of Debranone Series Strigolactone Agonists for Germination Stimulants in Orobanche Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19517-19525. [PMID: 39155455 DOI: 10.1021/acs.jafc.4c05797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Strigolactones (SLs) are plant hormones that regulate shoot branching. In addition, SLs act as compounds that stimulate the germination of root parasitic weeds, such as Striga spp. and Orobanche spp., which cause significant damage to agriculture worldwide. Thus, SL agonists have the potential to induce suicidal germination, thereby reducing the seed banks of root parasitic weeds in the soil. Particularly, phenoxyfuranone-type SL agonists, known as debranones, exhibit SL-like activity in rice and Striga hermonthica. However, little is known about their effects on Orobanche spp. In this study, we evaluated the germination-inducing activity of debranones against Orobanche minor. Analysis of structure-activity relationships revealed that debranones with electron-withdrawing substituents at the 2,4- or 2,6-position strongly induced the germination of Orobanche minor. Lastly, biological assays indicated that 5-(2-fluoro-4-nitrophenoxy)-3-methylfuran-2(5H)-one (test compound 61) induced germination to a comparable or even stronger extent than GR24, a well-known synthetic SL. Altogether, our data allowed us to infer that this enhanced activity was due to the recognition of compound 61 by the SLs receptor, KAI 2d, in Orobanche minor.
Collapse
Affiliation(s)
- Kojiro Kawada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Saori Takei
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Akifumi Nomura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshiya Seto
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kosuke Fukui
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Du L, Li X, Ding Y, Ma D, Yu C, Duan L. Design, Synthesis, and Bioactivities of N-Heterocyclic Ureas as Strigolactone Response Antagonists against Parasitic-Weed Seed Germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38593208 DOI: 10.1021/acs.jafc.3c08174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The pernicious parasitism exhibited by root parasitic weeds such as Orobanche and Striga poses substantial peril to agricultural productivity and global food security. This deleterious phenomenon hinges upon the targeted induction of the signaling molecule strigolactones (SLs). Consequently, the identification of prospective SL antagonists holds significant promise in the realm of mitigating the infection of these pernicious weeds. In this study, we synthesized and characterized D12 based on a potent SL antagonist KK094. In vivo assay results demonstrated that D12 remarkably impedes the germination of Phelipanche aegyptiaca and Striga asiatica seeds, while also alleviating the inhibitory consequence of the SL analogue GR24 on hypocotyl elongation in Arabidopsis thaliana. The docking study and ITC assay indicated that D12 can interact strongly with the SL receptor protein, which may interfere with the binding of SL to the receptor protein as a result. In addition, the results of crop safety assessment tests showed that D12 had no adverse effects on rice seed germination and seedling growth and development. The outcomes obtained from the present study suggested that D12 exhibited promise as a prospective antagonist of SL receptors, thereby displaying substantial efficacy in impeding the seed germination process of root parasitic weeds, providing a promising basis for rational design and development of further Striga-specific herbicides.
Collapse
Affiliation(s)
- Lin Du
- State Key Laboratory of Plant Environmental Resilience & Engineering Research Center of Plant Growth Regulator, MOE, College of Agronomy and Biotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xingjia Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yimin Ding
- State Key Laboratory of Plant Environmental Resilience & Engineering Research Center of Plant Growth Regulator, MOE, College of Agronomy and Biotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Dengke Ma
- State Key Laboratory of Plant Environmental Resilience & Engineering Research Center of Plant Growth Regulator, MOE, College of Agronomy and Biotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Chunxin Yu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Liusheng Duan
- State Key Laboratory of Plant Environmental Resilience & Engineering Research Center of Plant Growth Regulator, MOE, College of Agronomy and Biotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
3
|
Kawada K, Saito T, Onoda S, Inayama T, Takahashi I, Seto Y, Nomura T, Sasaki Y, Asami T, Yajima S, Ito S. Synthesis of Carlactone Derivatives to Develop a Novel Inhibitor of Strigolactone Biosynthesis. ACS OMEGA 2023; 8:13855-13862. [PMID: 37091382 PMCID: PMC10116532 DOI: 10.1021/acsomega.3c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Strigolactones (SLs), phytohormones that inhibit shoot branching in plants, promote the germination of root-parasitic plants, such as Striga spp. and Orobanche spp., which drastically reduces the crop yield. Therefore, reducing SL production via chemical treatment may increase the crop yield. To design specific inhibitors, it is valid to utilize the substrate structure of the target proteins as lead compounds. In this study, we focused on Os900, a rice enzyme that oxidizes the SL precursor carlactone (CL) to 4-deoxyorobanchol (4DO), and synthesized 10 CL derivatives. The effects of the synthesized CL derivatives on SL biosynthesis were evaluated by the Os900 enzyme assay in vitro and by measuring 4DO levels in rice root exudates. We identified some CL derivatives that inhibited SL biosynthesis in vitro and in vivo.
Collapse
Affiliation(s)
- Kojiro Kawada
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tatsuo Saito
- Department
of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Satoshi Onoda
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takuma Inayama
- Department
of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Ikuo Takahashi
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshiya Seto
- Department
of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1
Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Takahito Nomura
- Center
for Bioscience Research and Education, Utsunomiya
University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Yasuyuki Sasaki
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tadao Asami
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shunsuke Yajima
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shinsaku Ito
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- . Phone: +81-3-5477-2460
| |
Collapse
|
4
|
Ito S. Recent advances in the regulation of root parasitic weed damage by strigolactone-related chemicals. Biosci Biotechnol Biochem 2023; 87:247-255. [PMID: 36610999 DOI: 10.1093/bbb/zbac208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Root parasitic weeds such as Striga spp. and Orobanche spp. dramatically reduce the yields of important agricultural crops and cause economic losses of over billions of US dollars worldwide. One reason for the damage by root parasitic weeds is that they germinate after specifically recognizing the host cues, strigolactones (SLs). SLs were identified ˃50 years ago as germination stimulants for root parasitic weeds, and various studies have been conducted to control parasitic weeds using SLs and related chemicals. Recently, biochemical and molecular biological approaches have revealed the SL biosynthesis and SL receptors; using these findings, various SL-related chemicals have been developed. This review summarizes recent research on SLs and their related chemicals for controlling root parasitic weeds.
Collapse
Affiliation(s)
- Shinsaku Ito
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, Japan
| |
Collapse
|
5
|
Kleman J, Matusova R. Strigolactones: Current research progress in the response of plants to abiotic stress. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Kawada K, Koyama T, Takahashi I, Nakamura H, Asami T. Emerging technologies for the chemical control of root parasitic weeds. JOURNAL OF PESTICIDE SCIENCE 2022; 47:101-110. [PMID: 36479457 PMCID: PMC9706279 DOI: 10.1584/jpestics.d22-045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 06/17/2023]
Abstract
Parasitic plants in the Orobanchaceae family include devastating weed species, such as Striga, Orobanche, and Phelipanche, which parasitize major crops, drastically reduces crop yields and cause economic losses of over a billion US dollars worldwide. Advances in basic research on molecular and cellular processes responsible for parasitic relationships has now achieved steady progress through advances in genome analysis, biochemical analysis and structural biology. On the basis of these advances it is now possible to develop chemicals that control parasitism and reduce agricultural damage. In this review we summarized the recent development of chemicals that can control each step of parasitism from strigolactone biosynthesis in host plants to haustorium formation.
Collapse
Affiliation(s)
- Kojiro Kawada
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Tomoyuki Koyama
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Ikuo Takahashi
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Hidemitsu Nakamura
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Tadao Asami
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
7
|
Okazaki K, Koike I, Kera S, Yamaguchi K, Shigenobu S, Shimomura K, Umehara M. Gene expression profiling before and after internode culture for adventitious shoot formation in ipecac. BMC PLANT BIOLOGY 2022; 22:361. [PMID: 35869421 PMCID: PMC9308184 DOI: 10.1186/s12870-022-03756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), adventitious shoots can be induced simply by placing internodal segments on phytohormone-free culture medium. The shoots form locally on the epidermis of the apical region of the segments, but not the basal region. Levels of endogenous auxin and cytokinin transiently increase in the segments after 1 week of culture. RESULTS Here, we conducted RNA-seq analysis to compare gene expression patterns in apical and basal regions of segments before culture and after 1 week of culture for adventitious shoot formation. The results revealed 8987 differentially expressed genes in a de novo assembly of 76,684 genes. Among them, 276 genes were upregulated in the apical region after 1 week of culture relative to before culture and the basal region after 1 week of culture. These genes include 18 phytohormone-response genes and shoot-formation-related genes. Validation of the gene expression by quantitative real-time PCR assay confirmed that the expression patterns were similar to those of the RNA-seq data. CONCLUSIONS The transcriptome data show that expression of cytokinin biosynthesis genes is induced along with the acquisition of cellular pluripotency and the initiation of cell division by wounding in the apical region of internodal segments, that trigger adventitious shoot formation without callusing.
Collapse
Affiliation(s)
- Karin Okazaki
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Imari Koike
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Sayuri Kera
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Katushi Yamaguchi
- Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Koichiro Shimomura
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
- Department of Applied Biosciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
| |
Collapse
|
8
|
Kawada K, Sasaki Y, Asami T, Yajima S, Ito S. Insect growth regulators with hydrazide moiety inhibit strigolactone biosynthesis in rice. JOURNAL OF PESTICIDE SCIENCE 2022; 47:43-46. [PMID: 35414758 PMCID: PMC8931560 DOI: 10.1584/jpestics.d21-063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived plant hormones involved in several growth and developmental processes. Also, SLs are allelochemicals that induce the seed germination of root parasitic plants and the hyphal branching of arbuscular mycorrhizal fungi. In this study, to identify novel lead chemicals that inhibit SL biosynthesis, we evaluated the effect of agrochemicals on SL biosynthesis. We found that the diacylhydrazine insect growth regulator, chromafenozide, reduced the endogenous level of 4-deoxyorobanchol (4DO), a major SL in rice. Furthermore, treatment with the same class of insect growth regulator, methoxyfenozide, also resulted in the reduction of 4DO levels in rice root exudates. These results suggest that chromafenozide and methoxyfenozide are novel lead inhibitors of SL biosynthesis.
Collapse
Affiliation(s)
- Kojiro Kawada
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156–8502, Japan
| | - Yasuyuki Sasaki
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156–8502, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113–8657, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156–8502, Japan
| | - Shinsaku Ito
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156–8502, Japan
| |
Collapse
|
9
|
Chemical Synthesis of Triazole-Derived Suppressors of Strigolactone Functions. Methods Mol Biol 2021. [PMID: 34028676 DOI: 10.1007/978-1-0716-1429-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Triazole is a five-membered heteroring consists of two carbon atoms and three nitrogen atoms and exhibits a wide range of biological activities. The basic heterocyclic rings are 1,2,3-triazole and 1,2,4-triazole. Here we describe the chemical synthetic methods for triazole derivatives that can suppress the function of SL by inhibiting SL biosynthesis pathway or SL perception sites such as D14.
Collapse
|
10
|
Krasylenko Y, Komis G, Hlynska S, Vavrdová T, Ovečka M, Pospíšil T, Šamaj J. GR24, A Synthetic Strigolactone Analog, and Light Affect the Organization of Cortical Microtubules in Arabidopsis Hypocotyl Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:675981. [PMID: 34305975 PMCID: PMC8293678 DOI: 10.3389/fpls.2021.675981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/06/2021] [Indexed: 06/01/2023]
Abstract
Strigolactones are plant hormones regulating cytoskeleton-mediated developmental events in roots, such as lateral root formation and elongation of root hairs and hypocotyls. The latter process was addressed herein by the exogenous application of a synthetic strigolactone, GR24, and an inhibitor of strigolactone biosynthesis, TIS108, on hypocotyls of wild-type Arabidopsis and a strigolactone signaling mutant max2-1 (more axillary growth 2-1). Owing to the interdependence between light and strigolactone signaling, the present work was extended to seedlings grown under a standard light/dark regime, or under continuous darkness. Given the essential role of the cortical microtubules in cell elongation, their organization and dynamics were characterized under the conditions of altered strigolactone signaling using fluorescence microscopy methods with different spatiotemporal capacities, such as confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM). It was found that GR24-dependent inhibition of hypocotyl elongation correlated with changes in cortical microtubule organization and dynamics, observed in living wild-type and max2-1 seedlings stably expressing genetically encoded fluorescent molecular markers for microtubules. Quantitative assessment of microscopic datasets revealed that chemical and/or genetic manipulation of strigolactone signaling affected microtubule remodeling, especially under light conditions. The application of GR24 in dark conditions partially alleviated cytoskeletal rearrangement, suggesting a new mechanistic connection between cytoskeletal behavior and the light-dependence of strigolactone signaling.
Collapse
Affiliation(s)
- Yuliya Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Sofiia Hlynska
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Tereza Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Tomáš Pospíšil
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
11
|
Okazaki K, Watanabe S, Koike I, Kawada K, Ito S, Nakamura H, Asami T, Shimomura K, Umehara M. Strigolactone signaling inhibition increases adventitious shoot formation on internodal segments of ipecac. PLANTA 2021; 253:123. [PMID: 34014387 DOI: 10.1007/s00425-021-03640-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
SL inhibited adventitious shoot formation of ipecac, whereas the SL-related inhibitors promoted adventitious shoot formation. SL-related inhibitors might be useful as new plant growth regulators for plant propagation. In most plant species, phytohormones are required to induce adventitious shoots for propagating economically important crops and regenerating transgenic plants. In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), however, adventitious shoots can be formed without phytohormone treatment. Here we evaluated the effects of GR24 (a synthetic strigolactone, SL), SL biosynthetic inhibitors, and an SL antagonist on adventitious shoot formation during tissue culture of ipecac. We found that exogenously applied GR24 suppressed indole-3-acetic acid transport in internodal segments and decreased the number of adventitious shoots formed; in addition, the distribution of adventitious shoots changed from the apical to middle region of the internodal segments. In contrast, the SL-related inhibitors promoted adventitious shoot formation on both apical and middle regions of the segments. In particular, SL antagonist treatment increased endogenous cytokinin levels and induced multiple shoot development. These results indicate that SL inhibits adventitious shoot formation in ipecac. In ipecac, one of the shoots in each internodal segment becomes dominant and auxin derived from that shoot suppresses the other shoot growth. Here, this dominance was overcome by application of SL-related inhibitors. Therefore, SL-related inhibitors might be useful as new plant growth regulators to improve the efficiency of plant propagation in vitro.
Collapse
Affiliation(s)
- Karin Okazaki
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Sachi Watanabe
- Department of Applied Biosciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Imari Koike
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Kojiro Kawada
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Shinsaku Ito
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Hidemitsu Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Koichiro Shimomura
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
- Department of Applied Biosciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
| |
Collapse
|
12
|
Jamil M, Kountche BA, Al-Babili S. Current progress in Striga management. PLANT PHYSIOLOGY 2021; 185:1339-1352. [PMID: 33793943 PMCID: PMC8133620 DOI: 10.1093/plphys/kiab040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 05/20/2023]
Abstract
The Striga, particularly S. he rmonthica, problem has become a major threat to food security, exacerbating hunger and poverty in many African countries. A number of Striga control strategies have been proposed and tested during the past decade, however, further research efforts are still needed to provide sustainable and effective solutions to the Striga problem. In this paper, we provide an update on the recent progress and the approaches used in Striga management, and highlight emerging opportunities for developing new technologies to control this enigmatic parasite.
Collapse
Affiliation(s)
- Muhammad Jamil
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Boubacar A Kountche
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Author for communication:
| |
Collapse
|
13
|
Triflumizole as a Novel Lead Compound for Strigolactone Biosynthesis Inhibitor. Molecules 2020; 25:molecules25235525. [PMID: 33255720 PMCID: PMC7728069 DOI: 10.3390/molecules25235525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Strigolactones (SLs) are carotenoid-derived plant hormones involved in the development of various plants. SLs also stimulate seed germination of the root parasitic plants, Striga spp. and Orobanche spp., which reduce crop yield. Therefore, regulating SL biosynthesis may lessen the damage of root parasitic plants. Biosynthetic inhibitors effectively control biological processes by targeted regulation of biologically active compounds. In addition, biosynthetic inhibitors regulate endogenous levels in developmental stage- and tissue-specific manners. To date, although some chemicals have been found as SL biosynthesis inhibitor, these are derived from only three lead chemicals. In this study, to find a novel lead chemical for SL biosynthesis inhibitor, 27 nitrogen-containing heterocyclic derivatives were screened for inhibition of SL biosynthesis. Triflumizole most effectively reduced the levels of rice SL, 4-deoxyorobanchol (4DO), in root exudates. In addition, triflumizole inhibited endogenous 4DO biosynthesis in rice roots by inhibiting the enzymatic activity of Os900, a rice enzyme that converts the SL intermediate carlactone to 4DO. A Striga germination assay revealed that triflumizole-treated rice displayed a reduced level of germination stimulation for Striga. These results identify triflumizole as a novel lead compound for inhibition of SL biosynthesis.
Collapse
|