1
|
Delić K, Milinčić DD, Petrović AV, Stanojević SP, Gancel AL, Jourdes M, Pešić MB, Teissedre PL. Procyanidins and Anthocyanins in Young and Aged Prokupac Wines: Evaluation of Their Reactivity Toward Salivary Proteins. Foods 2025; 14:1780. [PMID: 40428559 PMCID: PMC12111099 DOI: 10.3390/foods14101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
In this study, the reactivity of procyanidins and anthocyanins in young and aged Prokupac wines toward salivary proteins is investigated via SDS-PAGE and UHPLC-QTOF-MS to determine the differences between the phenolic compounds of red wine in relation to the aging process of wine. SDS-PAGE analysis revealed that procyanidins, flavanol-anthocyanin polymers, and ellagitannins in aged wine have strong affinities for salivary proteins, leading to the formation of insoluble complexes. By contrast, young wine contained predominantly procyanidins with high salivary protein affinity, as well as monomeric flavan-3-ols and anthocyanins, which mainly form soluble aggregates, while polymeric phenolics were less represented. Electrophoretic patterns further showed that seed-derived procyanidins mainly formed insoluble complexes with salivary proteins, whereas skin-derived anthocyanins tended to form soluble ones. The total content of all phenolic compounds quantified by UHPLC-QTOF-MS was 2.5 times higher in young wine than in aged wine, primarily due to the significantly greater abundance of malvidine-3-O-glucoside in young wine (eightfold higher level in young wine). Targeted UHPLC-QTOF-MS analysis of selected phenolics confirmed the electrophoretic results and showed a higher binding affinity of procyanidins in aged wine compared to young wine, as well as a higher percentage of procyanidin binding compared to anthocyanins, independent of the age of the wine. Sensory evaluation showed that aged wine had higher tannin quality scores, whereas young wine exhibited greater acidity and astringency, with bitterness being comparable between them. These results highlight the influence of wine aging on the interaction between phenolic compounds and salivary proteins and emphasize the dominant role of procyanidins in protein binding and the potential synergistic contribution of anthocyanins to mouthfeel perception.
Collapse
Affiliation(s)
- Katarina Delić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (K.D.); (D.D.M.); (S.P.S.)
- Bordeaux Sciences Agro, Bordeaux INP, Université de Bordeaux, UMR 1366 OENOLOGIE, ISVV, 33140 Villenave d’Ornon, France; (A.-L.G.); (M.J.)
| | - Danijel D. Milinčić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (K.D.); (D.D.M.); (S.P.S.)
| | - Aleksandar V. Petrović
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (K.D.); (D.D.M.); (S.P.S.)
| | - Slađana P. Stanojević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (K.D.); (D.D.M.); (S.P.S.)
| | - Anne-Laure Gancel
- Bordeaux Sciences Agro, Bordeaux INP, Université de Bordeaux, UMR 1366 OENOLOGIE, ISVV, 33140 Villenave d’Ornon, France; (A.-L.G.); (M.J.)
| | - Michael Jourdes
- Bordeaux Sciences Agro, Bordeaux INP, Université de Bordeaux, UMR 1366 OENOLOGIE, ISVV, 33140 Villenave d’Ornon, France; (A.-L.G.); (M.J.)
| | - Mirjana B. Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (K.D.); (D.D.M.); (S.P.S.)
| | - Pierre-Louis Teissedre
- Bordeaux Sciences Agro, Bordeaux INP, Université de Bordeaux, UMR 1366 OENOLOGIE, ISVV, 33140 Villenave d’Ornon, France; (A.-L.G.); (M.J.)
| |
Collapse
|
2
|
He Y, Gao Y, Liu K, Han W. Database, prediction, and antibacterial research of astringency based on large language models. Comput Biol Med 2025; 184:109375. [PMID: 39531926 DOI: 10.1016/j.compbiomed.2024.109375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Astringency, a sensory experience causing mouth dryness, significantly impacts the taste of foods such as wine and tea, and astringent molecules may exhibit antibacterial properties. Traditional methods for predicting astringency are costly, and the connection between astringency and antibacterial activity remains largely unexplored. In this study, we present a pioneering computational approach that includes: (1) the creation of the first comprehensive astringency database comprising 238 molecules; (2) the development of a Ligand-Based Prediction (LBP) framework that combines large language models, deep learning, and traditional machine learning for enhanced molecular and peptide prediction; (3) an astringency predictor achieving 0.95 accuracy and 0.90 AUC, validated through electronic tongue measurements; (4) antibacterial predictors for molecules and peptides with accuracies of 0.92 and 0.88, respectively, revealing that 51 % of astringent molecules possess antibacterial properties; (5) accessibility of these predictors via the AstringentPD and ABPD web servers. This work not only enhances the understanding of taste-related molecules but also elucidates the relationship between astringency and antibacterial properties, setting the stage for future explorations in food science and medicinal applications.
Collapse
Affiliation(s)
- Yi He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yilin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
3
|
Cekić B, Marković J, Maksimović V, Ružić-Muslić D, Maksimović N, Ćosić I, Zeljić Stojiljković K. Characterization of Chestnut Tannins: Bioactive Compounds and Their Impact on Lamb Health. Life (Basel) 2024; 14:1556. [PMID: 39768264 PMCID: PMC11678802 DOI: 10.3390/life14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
The objective of the present study was to characterize the chestnut (Castanea sativa Mill.) tannin product, Farmatan Plus® (Tanin Sevnica d.d., Sevnica, Slovenia), and to subsequently examine its effects on the blood metabolic parameters of fattening lambs, particularly in relation to their health status. Thirty lambs were randomly divided into three treatment groups: a control group without added tannin and two groups that received 9.46 g of the tannin product/kg of the diet dry matter (DM) and 18.87 g of the tannin product/kg of the diet DM. Metabolic parameters such as contents of total protein, globulin, urea, and liver enzymes (AST and GGT) were measured over a trial period of 60 days to evaluate the effects of tannin supplementation. This study represents the first in-depth characterization of Farmatan Plus®, demonstrating its richness in bioactive compounds such as vescalin and castalagin. The results showed no significant adverse effects on lamb health, with all parameters remaining within normal physiological ranges (p > 0.05). These results support the safe inclusion of chestnut tannins in the diet of lambs and underline their potential as a functional feed additive that can positively influence the health and growth performance of ruminants.
Collapse
Affiliation(s)
- Bogdan Cekić
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (D.R.-M.); (N.M.); (I.Ć.); (K.Z.S.)
| | - Jordan Marković
- Institute for Forage Crops, Globoder, 37251 Kruševac, Serbia;
| | - Vuk Maksimović
- Department of Life Sciences, University of Belgrade—Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia;
| | - Dragana Ružić-Muslić
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (D.R.-M.); (N.M.); (I.Ć.); (K.Z.S.)
| | - Nevena Maksimović
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (D.R.-M.); (N.M.); (I.Ć.); (K.Z.S.)
| | - Ivan Ćosić
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (D.R.-M.); (N.M.); (I.Ć.); (K.Z.S.)
| | - Krstina Zeljić Stojiljković
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (D.R.-M.); (N.M.); (I.Ć.); (K.Z.S.)
| |
Collapse
|
4
|
Kuhnert N. Children of Nature: Thoughts on Targeted and Untargeted Analytical Approaches to Decipher Polyphenol Reactivity in Food Processing and Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17695-17705. [PMID: 39101581 PMCID: PMC11328182 DOI: 10.1021/acs.jafc.3c09211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Following 25 years of polyphenol research in our laboratory, the astonishing chemical and metabolic reactivity of polyphenols resulting in considerable chemical diversity has emerged as the most remarkable attribute of this class of natural products. To illustrate this concept, we will present selected data from black tea and coffee chemistry. In black tea chemistry, enzymatic fermentation converts six catechin derivatives into an estimated 30 000 different polyphenolic compounds via a process we have termed the oxidative cascade process. In coffee roasting, around 45 chlorogenic acids are converted into an estimated 250 novel derivatives following a series of diverse chemical transformations. Following ingestion by humans, these dietary polyphenols, whether genuine secondary metabolites or food processing products, encounter the microorganisms of the gut microbiota, converting them into a myriad of novel structures. In the case of coffee, only two out of 250 chlorogenic acids are absorbed intact, with most others being subject to gut microbial metabolism. Modern mass spectrometry (MS) has been key in unravelling the true complexity of polyphenols subjected to food processing and metabolism. We will accompany this assay with a short overview on analytical strategies developed, including ultrahigh-resolution MS, tandem MS, multivariate statistics, and molecular networking that allow an insight into the fascinating chemical processes surrounding dietary polyphenols. Finally, experimental results studying biological activity of polyphenols will be presented and discussed, highlighting a general promiscuity of this class of compounds associated with nonselective protein binding leading to loss of enzymatic function, another noteworthy general property of many dietary polyphenols frequently overlooked.
Collapse
Affiliation(s)
- Nikolai Kuhnert
- School of Science, Constructor University, Campusring 8, 28759 Bremen, Germany
| |
Collapse
|
5
|
Guerreiro C, Rinaldi A, Brandão E, de Jesus M, Gonçalves L, Mateus N, de Freitas V, Soares S. A look upon the adsorption of different astringent agents to oral models: Understanding the contribution of alternative mechanisms in astringency. Food Chem 2024; 448:139153. [PMID: 38569410 DOI: 10.1016/j.foodchem.2024.139153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Salivary proteins precipitation by interaction with polyphenols is the major mechanism for astringency. However, alternative mechanisms seem involved in the perception of different subqualities of astringency. In this study, adsorption of four astringent agents to in vitro oral models and their sensory properties were assessed. Overall, green tea infusion and tannic acid have shown a higher adsorption potential for models with oral cells and absence of saliva. Alum and grape seed extract presented higher adsorption in models with presence of oral cells and saliva. Multiple factor analysis suggested that adsorption may represent important mechanisms to elicit the astringency of alum. Models including saliva, were closely associated with overall astringency and aggressive subquality. Models with cells and absent saliva were closely associated with greenness, suggesting a taste receptor mechanism involvement in the perception. For the first time a correlation between an oral-cell based assay and astringency sensory perception was shown.
Collapse
Affiliation(s)
- Carlos Guerreiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | | | - Elsa Brandão
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | - Mónica de Jesus
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | - Leonor Gonçalves
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal.
| |
Collapse
|
6
|
Jahmidi-Azizi N, Oliva R, Winter R. Alcohol-Induced Conformation Changes and Thermodynamic Signatures in the Binding of Polyphenols to Proline-Rich Salivary Proteins. Chemistry 2023; 29:e202302384. [PMID: 37695254 DOI: 10.1002/chem.202302384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
The first contact of polyphenols (tannins) with the human body occurs in the mouth, where they are known to interact with proline-rich proteins (PRPs). These interactions are important at a sensory level, especially for the development of astringency, but affect also various other biochemical processes. Employing thermodynamic measurements, fluorescence and CD spectroscopy, we investigated the binding process of the prototypical polyphenol ellagic acid (EA) to different IB-PRPs and BSA, also in the presence of ethanol, which is known to influence tannin-protein interactions. Binding of EA to BSA and the small peptide IB7-14 is weak, but very strong to IB9-37. The differences in binding strength and stoichiometry are due to differences in the binding motifs, which also lead to differences in the thermodynamic signatures of the binding process. EA binding to BSA is enthalpy-driven, whereas binding to both IB7-14 and IB9-37 is entropy-driven. The presence of 10 vol.% EtOH, as present in wines, increases the binding constant of EA with BSA and IB7-14 drastically, but not that with IB9-37; however, it changes the binding stoichiometry. These differences can be attributed to the effect of EtOH on the conformation dynamics of the proteins and to changes in hydration properties in alcoholic solution.
Collapse
Affiliation(s)
- Nisrine Jahmidi-Azizi
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227, Dortmund, Germany
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Sarker P, Jani PK, Hsiao LC, Rojas OJ, Khan SA. Interacting collagen and tannic acid Particles: Uncovering pH-dependent rheological and thermodynamic behaviors. J Colloid Interface Sci 2023; 650:541-552. [PMID: 37423181 DOI: 10.1016/j.jcis.2023.06.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
HYPOTHESIS Biomaterials such as collagen and tannic acid (TA) particles are of interest in the development of advanced hybrid biobased systems due to their beneficial therapeutic functionalities and distinctive structural properties. The presence of numerous functional groups makes both TA and collagen pH responsive, enabling them to interact via non-covalent interactions and offer tunable macroscopic properties. EXPERIMENT The effect of pH on the interactions between collagen and TA particles is explored by adding TA particles at physiological pH to collagen at both acidic and neutral pH. Rheology, isothermal titration calorimetry (ITC), turbidimetric analysis and quartz crystal microbalance with dissipation monitoring (QCM-D) are used to study the effects. FINDINGS Rheology results show significant increase in elastic modulus with an increase in collagen concentration. However, TA particles at physiological pH provide stronger mechanical reinforcement to collagen at pH 4 than collagen at pH 7 due to the formation of a higher extent of electrostatic interaction and hydrogen bonding. ITC results confirm this hypothesis, with larger changes in enthalpy, |ΔH|, observed when collagen is at acidic pH and |ΔH| > |TΔS| indicating enthalpy-driven collagen-TA interactions. Turbidimetric analysis and QCM-D help to identify structural differences of the collagen-TA complexes and their formation at both pH conditions.
Collapse
Affiliation(s)
- Prottasha Sarker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Pallav K Jani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Orlando J Rojas
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
8
|
Pu Y, Chen L, He X, Cao J, Jiang W. Soluble polysaccharides decrease inhibitory activity of banana condensed tannins against porcine pancreatic lipase. Food Chem 2023; 418:136013. [PMID: 36989646 DOI: 10.1016/j.foodchem.2023.136013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
The inhibition of soluble polysaccharides (SPs) (arabic gum, dextran and pectin from citrus) on the binding between banana condensed tannins (BCTs) and pancreatic lipase (PL) was studied from variant aspects. Molecular docking simulations predicted that BCTs strongly bound SPs and PL through non-covalent interactions. The experimental results showed that SPs reduced the inhibition of BCTs on PL, and the IC50 value increased. However, the addition of SPs did not change the inhibitory type of BCTs on PL, which all were non-competitive inhibition. BCTs quenched PL fluorescence through static quenching mechanism and changed the secondary structure of PL. The addition of SPs alleviated the trending. The effect of SPs on the binding of BCTs-PL was mainly due to the strong non-covalent interaction between SPs and BCTs. This study emphasized that attention should be paid to the counteracting effects of polysaccharides and polyphenols in dietary intake to maximize their respective roles.
Collapse
|
9
|
Melo LFMD, Aquino-Martins VGDQ, Silva APD, Oliveira Rocha HA, Scortecci KC. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem 2023; 414:135645. [PMID: 36821920 DOI: 10.1016/j.foodchem.2023.135645] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Secondary metabolites are divided into three classes: phenolic, terpenoid, and nitrogenous compounds. Phenolic compounds are also known as polyphenols and include tannins, classified as hydrolysable or condensed. Herein, we explored tannins for their ROS reduction characteristics and role in homeostasis. These activities are associated with the numbers and degree of polymerisation of reactive hydroxyl groups present in the phenolic rings of tannins. These characteristics are associated with anti-inflammatory, anti-aging, and anti-proliferative health benefits. Tannins can reduce the risk of cancer and neurodegenerative diseases, such as cardiovascular diseases and Alzheimer's, respectively. These biomolecules may be used as nutraceuticals to maintain good gut microbiota. Industrial applications include providing durability to leather, anti-corrosive properties to metals, and substrates for 3D printing and in bio-based foam manufacture. This review updates regarding tannin-based research and highlights its biological and pharmacological relevance and potential applications.
Collapse
Affiliation(s)
- Luciana Fentanes Moura de Melo
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Ariana Pereira da Silva
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil; Departamento de Bioquímica - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Katia Castanho Scortecci
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil.
| |
Collapse
|
10
|
Bizzoca ME, Leuci S, Mignogna MD, Muzio EL, Caponio VCA, Muzio LL. Natural compounds may contribute in preventing SARS-CoV-2 infection: a narrative review. FOOD SCIENCE AND HUMAN WELLNESS 2022; 11:1134-1142. [PMID: 38621001 PMCID: PMC9160299 DOI: 10.1016/j.fshw.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coronavirus pandemic infection is the most important health issue worldwide. Coronavirus disease 2019 is a contagious disease characterized by severe acute respiratory syndrome coronavirus 2. To date, excluding the possibility of vaccination, against SARS-CoV-2 infection it is possible to act only with supportive care and non-virus-specific treatments in order to improve the patient's symptoms. Pharmaceutical industry is investigating effects of medicinal plants, phytochemical extracts and aromatic herbs to find out natural substances which may act as antiviral drugs. Several studies have revealed how these substances may interfere with the viral life cycle, viral entry, replication, assembly or discharge, as well as virus-specific host targets or stimulating the host immune system, reducing oxidative stress and inflammatory response. A natural compound can be used as a prophylaxis by people professionally exposed to the risk of contagion and/or positive patients not in intensive care. The aim of this paper is to perform a narrative review of current literature in order to summarize the most studied natural compounds and their modes of action.
Collapse
Affiliation(s)
- Maria Eleonora Bizzoca
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Stefania Leuci
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples 80131, Italy
| | - Michele Davide Mignogna
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples 80131, Italy
| | - Eleonora Lo Muzio
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | | | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
- C.I.N.B.O. (Consorzio Interuniversitario Nazionale per la Bio-Oncologia), Chieti 66100, Italy
| |
Collapse
|
11
|
González-Muñoz B, Garrido-Vargas F, Pavez C, Osorio F, Chen J, Bordeu E, O'Brien JA, Brossard N. Wine astringency: more than just tannin-protein interactions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1771-1781. [PMID: 34796497 DOI: 10.1002/jsfa.11672] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/22/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Red wines are characterized by their astringency, a very important sensory attribute that affects the perceived quality of wines. Three mechanisms have been proposed to explain astringency, and two theories describe how these mechanisms work in an integrated manner to produce tactile sensations such as drying, roughening, shrinking and puckering. The factors involved include not only tannins and salivary proteins, but also anthocyanins, grape polysaccharides and mannoproteins, as well as other wine matrix components that modulate their interactions. These multifactorial interactions could be responsible for different sensory responses and therefore need to be further studied. This review presents the latest advances in astringency perception and its possible origins, with special attention on the interactions of components, their impact on oral perception and the development of astringency sub-qualities. Future research efforts should concentrate on understanding the mechanisms involved as well as on the limiting factors related to the conformation and stability of the tannin-salivary protein complexes. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beatriz González-Muñoz
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Garrido-Vargas
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Pavez
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Osorio
- Departamento de Ciencia y Tecnología de Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Jianshe Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Edmundo Bordeu
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José A O'Brien
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Brossard
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Rakshit M, Srivastav PP. Sensory evaluation and storage stability of fat reduced shortdough biscuit using hydrolysable tannin encapsulated double emulsion as fat replacer. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Akande T, Khatib M, Ola Salawu S, Afolabi Akindahunsi A, Di Cesare Mannelli L, Ghelardini C, Balli D, Cecchi L, Mulinacci N. 1H NMR and HPLC-DAD-MS for the characterization of ellagitannins and triterpenoids of less investigated Anogeissus leiocarpus DC (Combretaceae) stem bark. Food Chem 2021; 375:131813. [PMID: 34920307 DOI: 10.1016/j.foodchem.2021.131813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 01/12/2023]
Abstract
Anogeissus leiocarpus DC is an evergreen tree, widely distributed in Asia and Africa. The stem bark is used in traditional medicine, and as chewing sticks and infusion. Nowadays, it is becoming increasingly important to define the phytochemical profile of less studied edible plants. Aim of this research was a first complete characterization of ellagitannins and triterpenoids profiles by HPLC-DAD-MS and 1H NMR and analyses. A total of 59 compounds were identified including 43 ellagitannins and 16 triterpenoids, mainly oleane derivatives and glycosylated forms. Among ellagitannins, roburin, vescalin and castalin were found for the first time. Tannins accounted for 38.9% whereas triterpenoids were 4.8%, both estimated on dry decoction. The decoction was preliminary tested against osteoarthritis in rats. The characterization of the main phytochemicals of Anogeissus leiocarpus DC stem bark decoction is a necessary step to evaluate nutraceutical properties, paving the way for possible food applications of this plant.
Collapse
Affiliation(s)
- Titilayo Akande
- Department of Biochemistry, College of Science, Federal University of Agriculture, P.M.B 2373 Makurdi, Benue State, Nigeria
| | - Mohamad Khatib
- Department of Neuroscience, Psychology, Drug and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, FI, Italy
| | - Sule Ola Salawu
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Akintunde Afolabi Akindahunsi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, Università degli Studi di Firenze, Viale G. Pieraccini 6, Florence 50139, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, Università degli Studi di Firenze, Viale G. Pieraccini 6, Florence 50139, Italy
| | - Diletta Balli
- Department of Neuroscience, Psychology, Drug and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, FI, Italy
| | - Lorenzo Cecchi
- Department of Neuroscience, Psychology, Drug and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, FI, Italy
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
14
|
Lyu J, Chen S, Xu Y, Li J, Nie Y, Tang K. Influence of tannins, human saliva, and the interaction between them on volatility of aroma compounds in a model wine. J Food Sci 2021; 86:4466-4478. [PMID: 34519051 DOI: 10.1111/1750-3841.15895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 01/08/2023]
Abstract
During wine drinking, aroma release is mainly impacted by wine matrix compositions and oral physiological parameters. Notably, tannins in wine could interact with saliva protein to form aggregates which might also affect the volatility of volatiles. To explore tannins, saliva, and the interaction between them on the volatility of volatiles, the volatility of 16 aroma compounds in the model wine mixed with the commercial tannin extracts, human saliva, or both respectively, was evaluated in vitro static condition by using HS-SPME-GC/MS. The volatility of aroma compounds with high hydrophobicity or benzene ring appeared to decrease more when increasing the tannin levels. Specifically, the volatility of ethyl octanoate, β-ionone, and guaiacol was decreased more than 20% by adding 2 g/L tannin extract. The addition of human saliva could significantly inhibit volatility of most aroma compounds in the model wine. Furthermore, the volatility of most aroma compounds in the mixture of tannins and human saliva was significantly lower than the control or the sample which were added with tannins or human saliva individually. The volatility of some aroma compounds in the mixture of the tannin and saliva was only around 50% or less, relative to the control. Two-way ANOVA analysis showed that there was a synergistic effect between tannin and saliva on decreasing the volatility of most aroma compounds (p < 0.05). Overall, understanding the effect of key factors such as tannins and saliva on volatility of volatiles could help to understand the sophisticated retronasal perceptions during wine tasting. PRACTICAL APPLICATION: The outputs of this research will be helpful in understanding the impact of tannins on retronasal aroma release during wine tasting. It might promote the control of tannins in the viticulture and brewing process to improve the retronasal perception of wine aroma.
Collapse
Affiliation(s)
- Jiaheng Lyu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Shuang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiming Li
- Center of Science and Technology, ChangYu Group Company Ltd., Yantai, Shandong, P.R. China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Ke Tang
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
15
|
Azevedo J, Jesus M, Brandão E, Soares S, Oliveira J, Lopes P, Mateus N, de Freitas V. Interaction between salivary proteins and cork phenolic compounds able to migrate to wine model solutions. Food Chem 2021; 367:130607. [PMID: 34388630 DOI: 10.1016/j.foodchem.2021.130607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
This work reports the study of the interaction of human salivary proteins (SP) with phenolic compounds that migrate from cork stoppers to wine. This study yields valuable data to understand the influence that these compounds may have on the sensory perception of wine from an astringency perspective. For that, three cork fractions containing the phenolic compounds that migrate in greater amounts from cork to model wine solutions were selected. Fraction M1 contains gallic acid, protocatechuic acid, vanillin and protocatechuic aldehyde; fraction M2 comprises essentially gallic acid and ellagic acid, as well as castalagin and dehydrocastalagin; and fraction M3 contains the two isomeric ellagitannins castalagin and vescalagin. The reactivity of each fraction towards SP was M3 > M2 > M1. Within M3 fraction, castalagin showed a higher ability to precipitate SP (mainly aPRPs, statherin and P-B peptide) comparatively to vescalagin. In M1 fraction, caffeic and sinapic acids were the compounds with the highest interaction with SP, mainly cystatins. In addition, there also seems to be a matrix effect (presence of other compounds) that could be affecting these interactions.
Collapse
Affiliation(s)
- Joana Azevedo
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Mónica Jesus
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Elsa Brandão
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Susana Soares
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Joana Oliveira
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Paulo Lopes
- Amorim Cork S.A. Rua dos Corticeiros 830, 4536-904 Santa Maria de Lamas, Portugal
| | - Nuno Mateus
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| |
Collapse
|
16
|
Francisco T, Pérez-Gregorio R, Soares S, Mateus N, Centeno F, de Fátima Teixeira M, de Freitas V. Understanding the molecular interactions between a yeast protein extract and phenolic compounds. Food Res Int 2021; 143:110261. [PMID: 33992362 DOI: 10.1016/j.foodres.2021.110261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Phenolic compounds are partially removed during fining, which may influence the organoleptic properties of beverages. Among phenolic compounds, tannins have been widely associated to the taste of beverages (namely astringency and bitterness). Furthermore, phenolic acids and anthocyanins may also influence bitterness and the latter are also responsible for beverages' color. Thus, it is necessary to perform molecular studies to better understand the effect of fining agents in the overall phenolic composition of beverages and the resulting organoleptic changes. The molecular interactions between these three classes of phenolic compounds and a yeast protein extract (YPE), designed as a new fining agent, was studied. The binding affinities were assessed by fluorescence quenching at two temperatures (21 °C and 37 °C) and in two reaction media (water and wine model solution). The size of aggregates formed was characterized by Dynamic Light Scattering and the selectivity of protein interaction was analyzed by electrophoresis. Overall, pentagalloylglucoside (tannin) showed the highest binding affinity for YPE, followed by malvidin 3-glucoside (anthocyanin), p-coumaric acid (phenolic acid) and gallic acid (phenolic acid). The studied temperatures and solvents affected the interaction affinities as well as the aggregates' size. Binding selectivity of proteins from YPE was not found. These results open new perspectives to control the fining process by using the YPE as a fining agent taking into account the further effect in the organoleptic properties of beverages.
Collapse
Affiliation(s)
- Telmo Francisco
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Rosa Pérez-Gregorio
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Susana Soares
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Filipe Centeno
- Proenol, Industria Biotecnologica S.A. Travessa das Lages 267, 4410-308 Canelas, VN Gaia, Portugal.
| | - Maria de Fátima Teixeira
- Proenol, Industria Biotecnologica S.A. Travessa das Lages 267, 4410-308 Canelas, VN Gaia, Portugal.
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| |
Collapse
|
17
|
Garrido-Bañuelos G, Buica A, du Toit W. Relationship between anthocyanins, proanthocyanidins, and cell wall polysaccharides in grapes and red wines. A current state-of-art review. Crit Rev Food Sci Nutr 2021; 62:7743-7759. [PMID: 33951953 DOI: 10.1080/10408398.2021.1918056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Numerous research studies have evaluated factors influencing the nature and levels of phenolics and polysaccharides in food matrices. However, in grape and wines most of these works have approach these classes of compounds individually. In recent years, the number of publications interconnecting classes have increased dramatically. The present review relates the last decade's findings on the relationship between phenolics and polysaccharides from grapes, throughout the entire winemaking process up to evaluating the impact of their relationship on the red wine sensory perception. The combination and interconnection of the most recent research studies, from single interactions in model wines to the investigation of the formation of complex macromolecules, brings the perfect story line to relate the relationship between phenolics and polysaccharides from the vineyard to the glass. Grape pectin is highly reactive toward grape and grape derived phenolics. Differences between grape cultivars or changes during grape ripeness will affect the extractability of these compounds into the wines. Therefore, the nature of the grape components will be crucial to understand the subsequent reactions occurring between phenolics and polysaccharide of the corresponding wines. It has been demonstrated that they can form very complex macromolecules which affect wine color, stability and sensory properties.
Collapse
Affiliation(s)
- Gonzalo Garrido-Bañuelos
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa.,Product Design - Agriculture and Food, Bioeconomy and Health, RISE Research Institutes of Sweden, Gothenburg, Sweden
| | - Astrid Buica
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Wessel du Toit
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
18
|
Delannoy López DM, Tran DT, Viault G, Dairi S, Peixoto PA, Capello Y, Minder L, Pouységu L, Génot E, Di Primo C, Deffieux D, Quideau S. Real-Time Analysis of Polyphenol-Protein Interactions by Surface Plasmon Resonance Using Surface-Bound Polyphenols. Chemistry 2021; 27:5498-5508. [PMID: 33443311 DOI: 10.1002/chem.202005187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/11/2022]
Abstract
A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol-protein interactions.
Collapse
Affiliation(s)
| | - Dong Tien Tran
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Guillaume Viault
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Sofiane Dairi
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | | | - Yoan Capello
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Laëtitia Minder
- INSERM, CNRS, IECB (US001, UMS 3033), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Carmelo Di Primo
- INSERM, CNRS (U1212, UMR 5320), IECB, Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
19
|
Losso JN. Food Processing, Dysbiosis, Gastrointestinal Inflammatory Diseases, and Antiangiogenic Functional Foods or Beverages. Annu Rev Food Sci Technol 2021; 12:235-258. [PMID: 33467906 DOI: 10.1146/annurev-food-062520-090235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Foods and beverages provide nutrients and alter the gut microbiota, resulting in eubiosis or dysbiosis. Chronic consumption of a diet that is high in saturated or trans fats, meat proteins, reducing sugars, and salt and low in fiber induces dysbiosis. Dysbiosis, loss of redox homeostasis, mast cells, hypoxia, angiogenesis, the kynurenine pathway, transglutaminase 2, and/or the Janus kinase pathway are implicated in the pathogenesis and development of inflammatory bowel disease, celiac disease, and gastrointestinal malignancy. This review discusses the effects of oxidative, carbonyl, or glycative stress-inducing dietary ingredients or food processing-derived compounds on gut microbiota and gastrointestinal epithelial and mast cells as well as on the development of associated angiogenic diseases, including key signaling pathways. The preventive or therapeutic potential and the biochemical pathways of antiangiogenic or proangiogenic foods or beverages are also described. The outcomes of the interactions between disease pathways and components of food are critical for the design of foods and beverages for healthy lives.
Collapse
Affiliation(s)
- Jack N Losso
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA;
| |
Collapse
|
20
|
Huang R, Xu C. An overview of the perception and mitigation of astringency associated with phenolic compounds. Compr Rev Food Sci Food Saf 2020; 20:1036-1074. [PMID: 33340236 DOI: 10.1111/1541-4337.12679] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Astringency, as a kind of puckering, drying, or rough sensation, is widely perceived from natural foods, especially plants rich in phenolic compounds. Although the interaction and precipitation of salivary proteins by phenolic compounds was often believed as the major mechanism of astringency, a definitive theory about astringency is still lacking due to the complex oral sensations. The interaction with oral epithelial cells and the activation of trigeminal chemoreceptors and mechanoreceptors also shed light on some of the phenolic astringency mechanisms, which complement the insufficient mechanism of interaction with salivary proteins. Since phenolic compounds with different types and structures show different astringency thresholds in a certain regularity, there might be some relationships between the phenolic structures and perceived astringency. On the other hand, novel approaches to reducing the unfavorable perception of phenolic astringency have been increasingly emerging; however, the according summary is still sparse. Therefore, this review aims to: (a) illustrate the possible mechanisms of astringency elicited by phenolic compounds, (b) reveal the possible relationships between phenolic structures and perception of astringency, and (c) summarize the emerging mitigation approaches to astringency triggered by phenolic compounds. This comprehensive review would be of great value to both the understanding of phenolic astringency and the finding of appropriate mitigation approaches to phenolic astringency in future research.
Collapse
Affiliation(s)
- Rui Huang
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Changmou Xu
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
21
|
Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|