1
|
Cholakova D, Denkov N. Polymorphic phase transitions in triglycerides and their mixtures studied by SAXS/WAXS techniques: In bulk and in emulsions. Adv Colloid Interface Sci 2024; 323:103071. [PMID: 38157769 DOI: 10.1016/j.cis.2023.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Triacylglycerols (TAGs) exhibit a monotropic polymorphism, forming three main polymorphic forms upon crystallization: α, β' and β. The distinct physicochemical properties of these polymorphs, such as melting temperature, subcell lattice structure, mass density, etc., significantly impact the appearance, texture, and long-term stability of a wide range products in the food and cosmetics industries. Additionally, TAGs are also of special interest in the field of controlled drug delivery and sustained release in pharmaceuticals, being a key material in the preparation of solid lipid nanoparticles. The present article outlines our current understanding of TAG phase behavior in both bulk and emulsified systems. While our primary focus are investigations involving monoacid TAGs and their mixtures, we also include illustrative examples with natural TAG oils, highlighting the knowledge transfer from simple to intricate systems. Special attention is given to recent discoveries via X-ray scattering techniques. The main factors influencing TAG polymorphism are discussed, revealing that a higher occurrence of structural defects in the TAG structure always accelerates the rate of the α → β polymorphic transformation. Diverse approaches can be employed based on the specific system: incorporating foreign molecules or solid particles into bulk TAGs, reducing drop size in dispersed systems, or using surfactants that remain fluid during TAG particle crystallization, ensuring the necessary molecular mobility for the polymorphic transformation. Furthermore, we showcase the role of TAG polymorphism on a recently discovered phenomenon: the creation of nanoparticles as small as 20 nm from initial coarse emulsions without any mechanical energy input. This analysis underscores how the broader understanding of the TAG polymorphism can be effectively applied to comprehend and control previously unexplored processes of notable practical importance.
Collapse
Affiliation(s)
- Diana Cholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria.
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| |
Collapse
|
2
|
Hassane Hamadou A, Zhang J, Li H, Chen C, Xu B. Modulating the glycemic response of starch-based foods using organic nanomaterials: strategies and opportunities. Crit Rev Food Sci Nutr 2023; 63:11942-11966. [PMID: 35900010 DOI: 10.1080/10408398.2022.2097638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditionally, diverse natural bioactive compounds (polyphenols, proteins, fatty acids, dietary fibers) are used as inhibitors of starch digestive enzymes for lowering glycemic index (GI) and preventing type 2 diabetes mellitus (T2DM). In recent years, organic nanomaterials (ONMs) have drawn a great attention because of their ability to overcome the stability and solubility issues of bioactive. This review aimed to elucidate the implications of ONMs in lowering GI and as encapsulating agents of enzymes inhibitors. The major ONMs are presented. The mechanisms underlying the inhibition of enzymes, the stability within the gastrointestinal tract (GIT) and safety of ONMs are also provided. As a result of encapsulation of bioactive in ONMs, a more pronounced inhibition of enzymes was observed compared to un-encapsulated bioactive. More importantly, the lower the size of ONMs, the higher their inhibitory effects due to facile binding with enzymes. Additionally, in vivo studies exhibited the potentiality of ONMs for protection and sustained release of insulin for GI management. Overall, regulating the GI using ONMs could be a safe, robust and viable alternative compared to synthetic drugs (acarbose and voglibose) and un-encapsulated bioactive. Future researches should prioritize ONMs in real food products and evaluate their safety on a case-by-case basis.
Collapse
Affiliation(s)
| | - Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiteng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants (Basel) 2023; 12:antiox12030633. [PMID: 36978881 PMCID: PMC10045442 DOI: 10.3390/antiox12030633] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Various active compounds are easily damaged, so they need protection and must be easily absorbed and targeted. This problem can be overcome by encapsulating in the form of solid lipid nanoparticles (SLNs). Initially, SLNs were widely used to encapsulate hydrophobic (non-polar) active compounds because of their matched affinity and interactions. Currently, SLNs are being widely used for the encapsulation of hydrophilic (polar) and semipolar active compounds, but there are challenges, including increasing their entrapment efficiency. This review provides information on current research on SLNs for encapsulation and delivery systems for active and antioxidant compounds, which includes various synthesis methods and applications of SLNs in various fields of utilization. SLNs can be developed starting from the selection of solid lipid matrices, emulsifiers/surfactants, types of active compounds or antioxidants, synthesis methods, and their applications or utilization. The type of lipid used determines crystal formation, control of active compound release, and encapsulation efficiency. Various methods can be used in the SLN fabrication of active compounds and hydrophilic/hydrophobic antioxidants, which have advantages and disadvantages. Fabrication design, which includes the selection of lipid matrices, surfactants, and fabrication methods, determines the characteristics of SLNs. High-shear homogenization combined with ultrasonication is the recommended method and has been widely used because of the ease of preparation and good results. Appropriate fabrication design can produce SLNs with stable active compounds and antioxidants that become suitable encapsulation systems for various applications or uses.
Collapse
|
4
|
Jalali-Jivan M, Rostamabadi H, Assadpour E, Tomas M, Capanoglu E, Alizadeh-Sani M, Kharazmi MS, Jafari SM. Recent progresses in the delivery of β-carotene: From nano/microencapsulation to bioaccessibility. Adv Colloid Interface Sci 2022; 307:102750. [PMID: 35987014 DOI: 10.1016/j.cis.2022.102750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Beta-carotene (BC) as an efficient pro-vitamin is effective in improving vision, immune system and cognitive function as well as preventing coronary diseases and cancer. However, besides its poor chemical stability, the high lipophilic nature of BC reduces its dispersibility and consequently bioavailability which limits its application into food, pharmaceutical and nutraceuticals. Different carriers with vesicular or particulate structures have been studied and utilized for promoting BC solubility, dispersibility, and protection against diverse operational or environmental stresses and also controlling BC release and subsequent bioaccessibility. The current study, therefore reviews different micro/nanocarriers reported on BC encapsulation with special focusing on its bioavailability. Liposomal structures have been successfully used for enhancing BC stability and bioavailability. Besides, emulsion-based carriers including Pickering emulsions, nanoemulsions and microemulsions have been widely evaluated for BC encapsulation and protection. In addition, lipid-based nanoparticles and nanostructural carriers have also been applied successfully for this context. Moreover, gel structures including emulgels, hydrogels and oleogels are studied in some researches. Most of these delivery systems led to higher hydro-solubility and dispersibility of BC which consequently increased its bioavailability; thereupon could promote its application into food, cosmetic and nutraceutical products. However, for remarkable incorporation of BC and other bioactive compounds into edible products, the safety and toxicological aspects of these delivery system especially those designed in nano scale should be addressed in the further researches.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303, Halkali, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
5
|
Kim E, Ban C, Kim SO, Lim S, Choi YJ. Applications and perspectives of polyphenol-loaded solid lipid nanoparticles and nanostructured lipid carriers for foods. Food Sci Biotechnol 2022; 31:1009-1026. [PMID: 35873373 PMCID: PMC9300790 DOI: 10.1007/s10068-022-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
Abstract
Imbalanced nutrition in modern society is one of the reasons for disorders, such as cancer, cardiovascular disease, and diabetes, which have attracted the interest in bioactives (particularly polyphenols) to assist in the balanced diet of modern people. Although stability can be maintained during preparation and storage, the ingested polyphenols undergo harsh gastrointestinal digestion processes, resulting in limited bioaccessibility and low gut-epithelial permeation and bioavailability. Several lipid-based formulations have been proposed to overcome these issues. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have also been highlighted as carrier systems for the oral delivery of lipophilic bioactives, including polyphenols. This paper summarizes the research on the ingredients, production methods, post-processing procedures, general characteristics, and advantages and disadvantages of SLNs and NLCs. Overall, this paper reviews the applications and perspectives of polyphenol-loaded SLNs and NLCs in foods, as well as their regulation, production, storage, and economic feasibility.
Collapse
Affiliation(s)
- Eunghee Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, Dongdaemungu, Seoul, 02504 Republic of Korea
| | - Sang-Oh Kim
- Department of Plant and Food Sciences, Sangmyung University, Cheonan, Chungnam 31066 Republic of Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeonggi 13120 Republic of Korea
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
| |
Collapse
|
6
|
Carvalho ASD, Rezende SCD, Caleja C, Pereira E, Barros L, Fernandes I, Manrique YA, Gonçalves OH, Ferreira IC, Barreiro MF. β-Carotene colouring systems based on solid lipid particles produced by hot melt dispersion. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Li G, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C. Tailored rigidity of W/O Pickering emulsions using diacylglycerol-based surface-active solid lipid nanoparticles. Food Funct 2021; 12:11732-11746. [PMID: 34698749 DOI: 10.1039/d1fo01883c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pickering water-in-oil (W/O) emulsions were fabricated by using medium-long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (SLNs) and the connection between the characteristics of the SLNs and the colloidal stability of the emulsions was established. Via melt-emulsification and ultrasonication, MLCD-based SLNs with particle sizes of 120-300 nm were obtained with or without other surfactants. The particle size of the SLNs was influenced by the chemical properties of the surfactants, and surfactants decreased the contact angle of SLNs at the oil-water interface. Gelation was observed in SLNs modified by sodium stearoyl lactylate and lecithin, whereas the addition of Tween 20 resulted in a homogeneous SLN solution. The adsorption of surfactants onto SLN surfaces caused the production of higher amounts of α crystals accompanied by delayed crystallization onset which contributed to the reduction of particle size, interfacial tension and oil wetting ability. The W/O emulsions with higher rigidity and physical stability can be obtained by varying surfactant types and by increasing SLN mass ratios to 60%, whereby more SLNs are adsorbed at the droplet surface as a Pickering stabilizer. This study provides useful insights for the development of diacylglycerol-based SLNs and Pickering W/O emulsions which have great potential for food, cosmetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Guoyan Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China. .,Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China. .,Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300 Selangor, Malaysia
| | - Oi Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43300 Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China. .,Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China. .,Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| |
Collapse
|
8
|
Sridhar K, Inbaraj BS, Chen BH. Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants (Basel) 2021; 10:713. [PMID: 33946470 PMCID: PMC8147144 DOI: 10.3390/antiox10050713] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Carotenoids are natural pigments widely used in food industries due to their health-promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, characterization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for varied lengths of time, while the release behavior and bioaccessibility were determined by various in vitro digestion and absorption models as well as bioavailability through elucidating pharmacokinetics in an animal model. Moreover, application of nanocarotenoids for various biological applications including antioxidant, anticancer, antibacterial, antiaging, cosmetics, diabetic wound healing and hepatic steatosis were summarized.
Collapse
Affiliation(s)
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (K.S.); or (B.S.I.)
| |
Collapse
|
9
|
|
10
|
Maretti E, Leo E, Rustichelli C, Truzzi E, Siligardi C, Iannuccelli V. In vivo β-carotene skin permeation modulated by Nanostructured Lipid Carriers. Int J Pharm 2021; 597:120322. [PMID: 33549810 DOI: 10.1016/j.ijpharm.2021.120322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/01/2022]
Abstract
Nanostructured Lipid Carriers (NLC) were investigated with the purpose of promoting skin permeation of the highly lipophilic β-carotene (BC) across the stratum corneum (SC) barrier so that it may perform its antioxidant properties in photo-aging and epithelial skin cancer prevention. Two differently sized NLC samples were developed using stearic acid and squalene as lipid matrix and evaluated in comparison with Microstructured Lipid Carriers (MLC). The carriers were characterized for morphology, size, Z-potential, BC loading and release as well as physical state by means of DSC and XRPD analyses. In vivo penetration of the carriers was assessed on humans by determining BC concentrations within the SC stratum disjunctum and stratum compactum layers removed by means of the tape stripping test in comparison with pure BC. Unlike MLC and pure BC that were mostly retained within the outermost layers of the SC, the NLC sample having the smallest size (about 200 nm) has proved to penetrate more deeply into the SC barrier. Accordingly, the goal of providing β-carotene actions against oxidative damages within the looser skin viable tissues could be envisaged.
Collapse
Affiliation(s)
- Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Cristina Siligardi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, via P. Vivarelli 10, 41125 Modena, Italy.
| | - Valentina Iannuccelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| |
Collapse
|
11
|
Normal-Phase HPLC-ELSD to Compare Lipid Profiles of Different Wheat Flours. Foods 2021; 10:foods10020428. [PMID: 33669180 PMCID: PMC7919678 DOI: 10.3390/foods10020428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Normal-phase high-performance liquid chromatography (HPLC) is widely used in combination with evaporative light scattering detection (ELSD) for separating and detecting lipids in various food samples. ELSD responses of different lipids were evaluated to elucidate the possibilities and challenges associated with quantification by means of HPLC-ELSD. Not only the number and type of polar functional groups but also the chain length and degree of unsaturation of (free or esterified) fatty acids (FAs) had a significant effect on ELSD responses. Tripalmitin and trilinolein yielded notably different ELSD responses, even if their constituting free FAs produced identical responses. How FA structure impacts ELSD responses of free FAs is thus not predictive for those of triacylglycerols and presumably other lipids containing esterified FAs. Because ELSD responses of lipids depend on the identity of the (esterified) FA(s) which they contain, fully accurate lipid quantification with HPLC-ELSD is challenging and time-consuming. Nonetheless, HPLC-ELSD is a good and fast technique to semi-quantitatively compare the levels of different lipid classes between samples of comparable FA composition. In this way, lipid profiles of different flours from near-isogenic wheat lines could be compared.
Collapse
|
12
|
Wen Y, Xu Z, Liu Y, Corke H, Sui Z. Investigation of food microstructure and texture using atomic force microscopy: A review. Compr Rev Food Sci Food Saf 2020; 19:2357-2379. [PMID: 33336971 DOI: 10.1111/1541-4337.12605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
We review recent applications of atomic force microscopy (AFM) to characterize microstructural and textural properties of food materials. Based on interaction between probe and sample, AFM can image in three dimensions with nanoscale resolution especially in the vertical orientation. When the scanning probe is used as an indenter, mechanical features such as stiffness and elasticity can be analyzed. The linkage between structure and texture can thus be elucidated, providing the basis for many further future applications of AFM. Microstructure of simple systems such as polysaccharides, proteins, or lipids separately, as characterized by AFM, is discussed. Interaction of component mixtures gives rise to novel properties in complex food systems due to development of structure. AFM has been used to explore the morphological characteristics of such complexes and to investigate the effect of such characteristics on properties. Based on insights from such investigations, development of food products and manufacturing can be facilitated. Mechanical analysis is often carried out to evaluate the suitability of natural or artificial materials in food formulations. The textural properties of cellular tissues, food colloids, and biodegradable films can all be explored at nanometer scale, leading to the potential to connect texture to this fine structural level. More profound understanding of natural food materials will enable new classes of fabricated food products to be developed.
Collapse
Affiliation(s)
- Yadi Wen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Yang C, Yan H, Jiang X, Xu H, Tsao R, Zhang L. Preparation of 9 Z-β-Carotene and 9 Z-β-Carotene High-Loaded Nanostructured Lipid Carriers: Characterization and Storage Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13844-13853. [PMID: 33164495 DOI: 10.1021/acs.jafc.0c02342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cis (Z)-β-carotenes with 25.3% 9Z-β-carotene were prepared for nanostructured lipid carriers (NLCs). The optimal conditions for NLC preparation using an orthogonal experimental method were as follows: the total lipid concentration was 9% (w/v), the surfactant concentration was 1.4% (w/v), the solid to liquid lipid ratio was 3:1 (w/w), and the homogenization pressure was set at 500 bar for three cycles. Under these conditions, the encapsulation efficiency (%) of the NLC was 95.64%, and the total β-carotene in NLCs was 2.9 mg/mL, which was significantly higher than those reported by others. The proportion of total Z-β-carotenes was as high as 53.3%, the particle size was 191 ± 6.46 nm, and the polydispersity index was 0.2 ± 0.03. Storage stability results indicated that the β-carotene-loaded NLC stabilizes both 9Z-β-carotene and total β-carotene from leakage and degradation during 21 days of storage at pH 3.5-7.5 at low temperatures (4 °C), especially for the more bioactive 9Z-β-carotene. The technique with an improved ratio of 9Z-β-carotene, loading capacity, water solubility, and bioaccessibility of the β-carotene NLC provides an effective strategy for β-carotene applications in functional foods or beverages and in nutraceutical preparations.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongxiao Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Huaneng Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Wu Z, Gao R, Zhou G, Huang Y, Zhao X, Ye F, Zhao G. Effect of temperature and pH on the encapsulation and release of β-carotene from octenylsuccinated oat β-glucan micelles. Carbohydr Polym 2020; 255:117368. [PMID: 33436201 DOI: 10.1016/j.carbpol.2020.117368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Effect and working mechanism of temperature and pH on encapsulation and release of β-carotene from octenylsuccinated-oat-β-glucan-micelles (OSβG-Ms) were investigated. The stability and solubility of β-carotene, and changes in surface hydrophilicity, core hydrophobicity, and size of β-carotene-loaded-OSβG-Ms were determined. When exposed to temperature (25-45 °C) and pH (4.5-8.5), β-carotene solubilization changed in parabolic manners. Size and absolute zeta-potential of β-carotene-loaded-OSβG-Ms decreased with temperature, while they gave parabolic changing patterns with pH. Those results were ascribed to their hydrophilicity, hydrophobicity, and core/shell compactness via regulating molecule mobility, orientation, and interactions by temperature/pH. The higher temperature concluded with higher β-carotene release, while a U-shaped release profile was observed with pH. Besides its diffusion, erosion-induced shrinking and collapsing of OSβG-Ms favored β-carotene release at pH 1.2-4.5, which was replaced by swelling-induced structural-relaxation at pH 6.8-8.5. The results were favourable in controlling the behavior of β-carotene-loaded-OSβG-Ms by selectively applying environmental parameters.
Collapse
Affiliation(s)
- Zhen Wu
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, PR China
| | - Ruiping Gao
- College of Food Science, Southwest University, Chongqing, 400715, PR China; College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, PR China
| | - Gaojuan Zhou
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Yongxia Huang
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Xiaowan Zhao
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering Research Center of Regional Foods, Chongqing, 400715, PR China.
| |
Collapse
|