1
|
Safdar M, Kim W, Kim D, Lee S, Kim YO, Kim J. Dose-responsive phytotoxicity and oxidative stress induced by metal-organic framework PCN-224 in Arabidopsis thaliana seedlings. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137067. [PMID: 39756321 DOI: 10.1016/j.jhazmat.2024.137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Metal-organic frameworks (MOFs) are advanced porous materials composed of metal ions and organic ligands, known for their unique structures and fascinating physio-chemical properties. To ensure their safe production and applications, it is crucial to thoroughly investigate their toxicity and environmental hazards. However, the potential risks of MOFs, particularly their impact on plants remained underexplored. Herein, we systematically assessed the phytotoxicity of PCN-224 on Arabidopsis thaliana (A. thaliana) due to its commercial availability and widespread use. To achieve this goal, A. thaliana seedlings were subjected to PCN-224 concentrations (10-300 µg/mL) and durations (1-12 days) in agar media, with a control group. PCN-224 slightly accelerated seed germination across all concentrations without altering the total germination rate. Exposure to a higher concentration of PCN-224 (300 µg/mL) significantly impaired A. thaliana development, reducing fresh weight (54.0 %) and root length (82.3 %) compared with control; however, lower exposure (10 µg/mL) showed minimal growth inhibition. Fluorescence microscopy showed that PI-labeled PCN-224 particles adhered to root surfaces and internalized in a concentration- and time-dependent manner, with notable xylem accumulation after 2 h. The net photosynthetic rate, transpiration rate, and stomatal conductance decreased by 54.25 %, 62.37 % and 38.53 %, respectively, compared with control, when the material concentration exceeded 100 µg/mL. Regarding the oxidative damage, higher PCN-224 exposure reduced antioxidant levels and downregulation of antioxidant-related genes resulted in a diminished oxidative stress response. Overall, our study highlights the potential risk of MOFs for plant growth and emphasizes the need to assess their environmental impact for sustainable agricultural practices.
Collapse
Affiliation(s)
- Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dream Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shinyull Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Ezhumalai N, Panchalingam S, Govindaraju K, Kannan M, Kasthuri J, Rajendiran N. Self-assembly of differently charged trimesic based lithocholic amphiphiles and their assessment on antimicrobial and biostimulant properties. Colloids Surf B Biointerfaces 2025; 246:114391. [PMID: 39603200 DOI: 10.1016/j.colsurfb.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Biosurfactant based biostimulants plays a vital role in agriculture filed by enhancing the soil quality, promote plant growth, and eliminate plant pathogens, and increasing nutrient uptake. This manuscript describes the synthesis of trimesic based lithocholic ester functionalized amphiphiles (TMLCEA) with oppositely charged head groups using thiol-yne click chemistry, which is an effective and simple approach. The trimesic based lithocholic ester functionalized zwitterionic penicillamine (TMLCEPA), cationic cysteamine·HCl (TMLCECy), and anionic thiomalic acid (TMLCETM) exhibited hierarchically self-assembled microstructures from below to above the CMC. In below the CMC, TMLCEPA, TMLCECy, and TMLCETM showed a bundle of petals, flower-like morphology, and grass seed-like patterns respectively. The morphology of self-assembly was studied by FE-SEM, DLS, OPM, contact angle, and zeta potential measurements. Among these amphiphiles, TMLCECy exhibited potential antimicrobial activity at above the CMC. The biostimulant effect of different concentration of TMLCEA treated with maize and green gram seeds were evaluated under in vitro condition, wherein TMLCECy showed improved seed germination and seedling parameters at 750 µL/mL as compared to TMLCEPA, TMLCETM and untreated amphiphiles as control. Molecular docking and molecular dynamic simulations show that TMLCEPA and TMLCETM showed higher binding affinity for dengue methyltransferase protein. The result of the present study opens up new avenues for bile acid-based amphiphiles as bio-based and cost-effective biostimulants for sustainable agriculture.
Collapse
Affiliation(s)
- Nishanthi Ezhumalai
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600025, India
| | - Santhiya Panchalingam
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Kasivelu Govindaraju
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Malaichamy Kannan
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Jayapalan Kasthuri
- Department of Chemistry, Quaid-E-Millath Government College for Women, Chennai, Tamil Nadu 600002, India
| | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600025, India.
| |
Collapse
|
3
|
He R, Fan C, Liang Q, Wang Y, Gao Y, Wu J, Wu Q, Tai F. Directed assembly of fullerenols via electrostatic and coordination interactions to fabricate diverse and water-soluble metal cation-fullerene nanocluster complexes. RSC Adv 2024; 14:1472-1487. [PMID: 38174261 PMCID: PMC10763661 DOI: 10.1039/d3ra07725j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ion-nanocluster coordination complexes can produce a variety of functional engineered nanomaterials with promising characteristics to enable widespread applications. Herein, the visualization observation of the interactions of metal ions and fullerene derivatives, particularly anionic fullerenols (Fol), were carried out in aqueous solutions. The alkali metal salts only resulted in salting out of Fol to gain re-soluble sediments, whereas multivalent metal cations (Mn+, n = 2, 3) modulated further assembly of Fol to produce insoluble hybrids. These provide crucial insights into the directed assembly of Fol that two major forces involved in actuation are electrostatic and coordination effects. Through the precise modulation of feed ratios of Fol to Mn+, a variety of water-soluble Mn+@Fol coordination complexes were facilely prepared and subsequently characterized by various measurements. Among them, X-ray photoelectron spectra validated the coordination effects through the metal cation and oxygen binding feature. Transmission electron microscopy delivered valuable information about diverse morphologies and locally-ordered microstructures at the nanoscale. This study opens a new opportunity for developing a preparation strategy to fabricate water-soluble metal cation-fullerenol coordination complexes with various merits for potential application in biomedical fields.
Collapse
Affiliation(s)
- Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Chenjie Fan
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Qingyuan Liang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Yan Wang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Yanyan Gao
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Jiakai Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Qingnan Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University Zhengzhou 450046 China
| |
Collapse
|
4
|
Yang SS, Lv QY, Fu J, Zhang TY, Du YS, Yang XJ, Zhou L. New 7-Chloro-9-methyl-2-phenyl-3,4-dihydro-β-carbolin-2-iums as Promising Fungicide Candidates: Design, Synthesis, and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4256-4266. [PMID: 35362951 DOI: 10.1021/acs.jafc.1c07278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As our further research, a series of new 7-chloro-9-methyl-2-phenyl-3,4-dihydro-β-carbolin-2-iums were designed and synthesized. Twelve compounds were found with excellent inhibition activity in vitro on three to five out of six phytopathogenic fungi, superior to standard drugs thiabendazole and/or azoxystrobin. Especially, 18 displayed the highest activity against three out of the fungi and the highest comprehensive activity for all of the fungi. The test in vivo revealed that 18 at 50 μg/mL was able to completely control Physalospora piricola infections in apples over 8 days. Scanning/transmission electron microscopic observations found that 18 could damage the hyphal integrity and cell membrane structure of P. piricola. The safety evaluation showed that 18 had no effect on the germination rate of cowpea seed at ≤200 μg/mL. The SAR revealed that the combination of 7-Cl and 2'- or 4'-alkyl is conducive to improvement of the activity. Thus, 7-chloro-9-methyl-2-phenyl-3,4-dihydro-β-carbolin-2-ium is a promising antifungal lead scaffold.
Collapse
Affiliation(s)
- Shan-Shan Yang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Qing-Yun Lv
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Juan Fu
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Tian-Yi Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Yi-Si Du
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Xin-Juan Yang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|
5
|
Tai F, Wang S, Liang B, Li Y, Wu J, Fan C, Hu X, Wang H, He R, Wang W. Quaternary ammonium iminofullerenes improve root growth of oxidative-stress maize through ASA-GSH cycle modulating redox homeostasis of roots and ROS-mediated root-hair elongation. J Nanobiotechnology 2022; 20:15. [PMID: 34983547 PMCID: PMC8725307 DOI: 10.1186/s12951-021-01222-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Various environmental factors are capable of oxidative stress to result in limiting plant development and agricultural production. Fullerene-based carbon nanomaterials can enable radical scavenging and positively regulate plant growth. Even so, to date, our knowledge about the mechanism of fullerene-based carbon nanomaterials on plant growth and response to oxidative stress is still unclear. Results 20 or 50 mg/L quaternary ammonium iminofullerenes (IFQA) rescued the reduction in root lengths and root-hair densities and lengths of Arabidopsis and maize induced by accumulation of endogenous hydrogen peroxide (H2O2) under 3-amino-1,2,4-triazole or exogenous H2O2 treatment, as well as the root active absorption area and root activity under exogenous H2O2 treatment. Meanwhile, the downregulated contents of ascorbate acid (ASA) and glutathione (GSH) and the upregulated contents of dehydroascorbic acid (DHA), oxidized glutathione (GSSG), malondialdehyde (MDA), and H2O2 indicated that the exogenous H2O2 treatment induced oxidative stress of maize. Nonetheless, application of IFQA can increase the ratios of ASA/DHA and GSH/GSSG, as well as the activities of glutathione reductase, and ascorbate peroxidase, and decrease the contents of H2O2 and MDA. Moreover, the root lengths were inhibited by buthionine sulfoximine, a specific inhibitor of GSH biosynthesis, and subsequently rescued after addition of IFQA. The results suggested that IFQA could alleviate exogenous-H2O2-induced oxidative stress on maize by regulating the ASA-GSH cycle. Furthermore, IFQA reduced the excess accumulation of ROS in root hairs, as well as the NADPH oxidase activity under H2O2 treatment. The transcript levels of genes affecting ROS-mediated root-hair development, such as RBOH B, RBOH C, PFT1, and PRX59, were significantly induced by H2O2 treatment and then decreased after addition of IFQA. Conclusion The positive effect of fullerene-based carbon nanomaterials on maize-root-hair growth under the induced oxidative stress was discovered. Application IFQA can ameliorate oxidative stress to promote maize-root growth through decreasing NADPH-oxidase activity, improving the scavenging of ROS by ASA-GSH cycle, and regulating the expressions of genes affecting maize-root-hair development. It will enrich more understanding the actual mechanism of fullerene-based nanoelicitors responsible for plant growth promotion and protection from oxidative stress. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuai Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Benshuai Liang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yue Li
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiakai Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chenjie Fan
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hezhong Wang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Wang T, Zang Z, Wang S, Liu Y, Wang H, Wang W, Hu X, Sun J, Tai F, He R. Quaternary ammonium iminofullerenes promote root growth and osmotic-stress tolerance in maize via ROS neutralization and improved energy status. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:122-131. [PMID: 33984624 DOI: 10.1016/j.plaphy.2021.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
In the present study, the role of quaternary ammonium iminofullerenes (IFQA) on the root growth of plant seedlings was investigated. The root elongation of Arabidopsis and maize exposed to 20 and 50 mg/L of IFQA was promoted under normal and osmotic stress conditions, respectively. In the meantime, the root active absorption area and adenosine triphosphate content in roots of maize seedlings were enhanced by IFQA treatment, however, the contents of hydrogen peroxide (H2O2) and malondialdehyde in roots were down-regulated. IFQA application improved glutathione transferase and glutathione reductase activities and the ratios of glutathione/oxidized glutathione and ascorbic acid/dehydroascorbic acid, and restored the inhibition of root elongation caused by the excess accumulation of H2O2 in roots of maize seedlings under osmotic stress. Furthermore, the expression of 14 proteins involved in cell growth, energy metabolism, and stress response in maize roots was upregulated by two-dimensional electrophoresis combined with mass spectrometry. This analysis revealed that IFQA stimulated the redox pathway to maintain balance levels of reactive oxygen species to ensure normal cell metabolism, promote energy production for root growth, and enhance osmotic-stress tolerance. It provided crucial information to elucidate the mechanism of the root growth of crop seedlings enhanced by water-soluble fullerene-based nanomaterials.
Collapse
Affiliation(s)
- Tingting Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenfeng Zang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuai Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuke Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hezhong Wang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinhua Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
Guan X, Li Q, Maimaiti T, Lan S, Ouyang P, Ouyang B, Wu X, Yang ST. Toxicity and photosynthetic inhibition of metal-organic framework MOF-199 to pea seedlings. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124521. [PMID: 33221080 DOI: 10.1016/j.jhazmat.2020.124521] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 05/21/2023]
Abstract
Metal-organic framework (MOF) materials are star materials with unique structures and properties. To ensure safe production and applications, the toxicity and environmental hazards of MOF materials should be thoroughly investigated. However, the environmental impact of MOF materials on plants is completely unknown. Herein, we reported the toxicity and photosynthetic inhibitory properties of MOF-199 to pea plants (Pisum sativum L.). MOF-199 was synthesized by hydrothermal method. MOF-199 was copper containing double-pyramid of high surface area (668 m2/g). MOF-199 accelerated the germination of pea seeds, but the total germination rates were unchanged. MOF-199 inhibited the seedling growth at high concentrations. The net photosynthetic rate increased, while the total photosynthesis capability decreased. Damage to the acceptor side of photosystem II was evidenced by chlorophyll fluorescence. Mechanistically, MOF-199 released Cu2+ in the nutrient solution, led to Cu2+ accumulations in seedlings, and promoted oxidative stress. In addition, the photosynthetic inhibitions of MOF-199 were stronger than equivalent concentrations of Cu(NO3)2, implying that MOF-199 particles also contributed to the environmental hazards. Our results highlighted the potential threat of MOF materials to plant growth and photosynthesis.
Collapse
Affiliation(s)
- Xin Guan
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Qun Li
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Tusunniyaze Maimaiti
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Suke Lan
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Peng Ouyang
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Bowei Ouyang
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Xian Wu
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Sheng-Tao Yang
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
8
|
Zhang JH, Zhang M, Bai BQ, Jia HW, Fan SH. Studies on Adsorption Kinetics and Thermodynamics of Macroporous Resin for Rosmarinic Acid. J Oleo Sci 2021; 70:439-451. [PMID: 33583922 DOI: 10.5650/jos.ess20305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This experiment treated perilla seeds with different concentrations of NaCl solution to enrich and purify their rosmarinic acid (RosA). The results showed that low concentrations of salt (0-20 mmol/L) promoted seed germination, while high concentrations (> 20 mmol/L) inhibited germination. When the salt concentration was 20 mmol/L, the germination rate was the highest. The content of RosA in germinated perilla seeds was 3.5 mg/g, which was 3.5 times as much as that in the seeds without germination. The RosA was purified using NK-109 macroporous resin and its adsorption kinetics, isotherms and thermodynamics were determined. The adsorption kinetics showed that the adsorption behavior of RosA in NK-109 resin conformed to the pseudo-second-order kinetic model. The model for RosA in the NK-109 resin exhibited Langmuir adsorption based on a spontaneous exothermic process according to its adsorption thermodynamics, which included both physical and chemical adsorption. The optimized process conditions were as follows: the loading concentration of 0.04 mg/mL, loading volume of 40 mL, 70% methanol as the eluent with the volume of 60 mL, and the purity of RosA was 42.1%.
Collapse
Affiliation(s)
- Jin-Hua Zhang
- College of Life Science, Shanxi University
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University
| | - Min Zhang
- College of Life Science, Shanxi University
| | - Bao-Qing Bai
- College of Life Science, Shanxi University
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University
| | | | - San-Hong Fan
- College of Life Science, Shanxi University
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University
| |
Collapse
|
9
|
Szőllősi R, Molnár Á, Kondak S, Kolbert Z. Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1745. [PMID: 33321844 PMCID: PMC7763982 DOI: 10.3390/plants9121745] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/15/2023]
Abstract
Due to recent active research, a large amount of data has been accumulated regarding the effects of different nanomaterials (mainly metal oxide nanoparticles, carbon nanotubes, chitosan nanoparticles) on different plant species. Most studies have focused on seed germination and early seedling development, presumably due to the simplicity of these experimental systems. Depending mostly on size and concentration, nanomaterials can exert both positive and negative effects on germination and seedling development during normal and stress conditions, thus some research has evaluated the phytotoxic effects of nanomaterials and the physiological and molecular processes behind them, while other works have highlighted the favorable seed priming effects. This review aims to systematize and discuss research data regarding the effect of nanomaterials on germination and seedling growth in order to provide state-of-the-art knowledge about this fast developing research area.
Collapse
Affiliation(s)
- Réka Szőllősi
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Hungary; (Á.M.); (S.K.); (Z.K.)
| | | | | | | |
Collapse
|