1
|
Zhang Y, Zeng X, Ma T, Zhang D, Wu T, Zhao H, Cheng N, Cao W. Identification of unique peptide markers for rape (Brassica napus L.) honey with untargeted and targeted proteomics approaches and its application in honey adulteration analysis. Food Chem 2025; 483:144256. [PMID: 40222131 DOI: 10.1016/j.foodchem.2025.144256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Rape honey is often adulterated into other high-value honey due to its high yield, low price, and light color. This study employed untargeted and targeted proteomics approaches to analyze the proteome of rape honey and identify its floral peptide markers to recognize the adulteration of rape honey into acacia honey. A total of 616 rape-derived proteins and 84 bee-derived proteins were identified in rape honey by untargeted UPLC-Orbitrap-HRMS. Three plant-derived peptide markers (GIIIDSGTVITR, NTGSLPLSPK, and M(O)EDITLLQTQSAIR) were exclusively present in all detected rape honeys by targeted UPLC-TQMS, but were absent in three other non-rape honey varieties. By utilizing MRM of three peptide markers combined with PCA and OPLS-DA, acacia honey, rape honey, and adulterated honey could be effectively differentiated, and the minimum adulteration LOD and LOQ were 0.36 % and 1.08 %, respectively. This study firstly identified characteristic rape-derived peptide markers and successfully applied them in the recognition of rape honey adulteration.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Xiaojun Zeng
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Tianchen Ma
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Diandian Zhang
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Ting Wu
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Ni Cheng
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
2
|
Duan X, Xie W, Chen X, Zhang H, Zhao T, Huang J, Zhang R, Li X. Morphological and molecular mechanisms of floral nectary development in Chinese Jujube. BMC PLANT BIOLOGY 2024; 24:1041. [PMID: 39497044 PMCID: PMC11533333 DOI: 10.1186/s12870-024-05760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Chinese jujube (Ziziphus jujuba Mill.), also called Chinese date, is one of the oldest and widely cultivated fruit trees with great economic values, which, at least, can be attributed to the melliferous flower with highly developed nectary that can secret huge amount of nectar in a rather tiny floral size. However, the morphological nature, metabolic products, developmental process, as well as molecular and regulatory mechanisms of jujube nectary remain largely unknown. RESULTS Here, we selected Z. jujuba 'Dongzao' as a system to address these questions. We uncovered that the jujube nectary is an annular or donut-shaped secretory protrusion that surrounds the base of the carpels, along with emerald and glistening hues, which can produce a bulk honey with many metabolic compounds (e.g. saccharides and flavonoids) that has a high nutritional value and benefit for human health. The development of jujube nectary is a dynamic process of earlier cell division followed by later cell expansion. We also identified putative genes associated with the nectary development and found that the CRABS CLAW (CRC) ortholog (ZjCRC) is the key to nectary development: the gene is highly expressed in nectary; ectopic expression of it in the Arabidopsis crc-1 mutant rescued the lost nectary (also the carpel and silique defects). We also demonstrated that a MADS-box transcription factor ZjAGAMOUS1 (ZjAG1) is required for the direct activation of ZjCRC expression. CONCLUSIONS Taken together, our results not only provide a comprehensive portrait of the jujube nectary, but also pave the way to effective utilization of jujube and other woody crops.
Collapse
Affiliation(s)
- Xiaoshan Duan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Wenjie Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiling Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanghang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyang Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Huang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Recent advances in Chinese food authentication and origin verification using isotope ratio mass spectrometry. Food Chem 2023; 398:133896. [DOI: 10.1016/j.foodchem.2022.133896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022]
|
4
|
Bouali N, Hamadou WS, Badraoui R, Lajimi RH, Hamdi A, Alreshidi M, Adnan M, Soua Z, Siddiqui AJ, Noumi E, Snoussi M. Phytochemical Composition, Antioxidant, and Anticancer Activities of Sidr Honey: In Vitro and In Silico Computational Investigation. Life (Basel) 2022; 13:life13010035. [PMID: 36675984 PMCID: PMC9867352 DOI: 10.3390/life13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the major causes of death worldwide. The repercussions of conventional therapeutic approaches present a challenge in the delivery of new effective treatments. Thus, more attention is being awarded to natural products, mainly honey. Honey could be the basis for the development of new therapies for cancer patients. The aim of this study is to assess the phytochemical profiling, antioxidant, drug-likeness properties, and anticancer activity of Ziziphus honey (ZH) derived from the Hail region of Saudi Arabia. The phytochemical profiling using high resolution-liquid chromatography mass spectrometry (HR-LCMS) revealed 10 compounds belonging to several familial classes and one tripeptide. Potential antioxidant activity was noted as assessed by DPPH (IC50 0.670 mg/mL), ABTS (IC50 3.554 mg/mL), and β-carotene (IC50 > 5 mg/mL). The ZH exerted a notable cytotoxic effect in a dose-dependent manner against three cancer cell lines: lung (A549), breast (MCF-7), and colon (HCT-116), with respective IC50 values of 5.203%, 6.02%, and 7.257%. The drug-likeness investigation unveiled that most of the identified compounds meet Lipinski’s rule. The molecular docking analysis revealed interesting antioxidant and anticancer activities for most targeted proteins and supported the in vitro findings. The Miraxanthin-III compound exhibited the most stabilized interaction. This study provides deeper insights on ZH as prominent source of bioactive compounds with potent antioxidant and anticancer effects.
Collapse
Affiliation(s)
- Nouha Bouali
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Research Unit: Molecular Biology of Leukemia and Lymphoma, Department of Biochemistry, University of Medecine of Sousse, Sousse 4002, Tunisia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Section of Histology—Cytology, University of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Road Djebal Lakhdhar, Tunis 1007, Tunisia
- Department of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia
| | - Ramzi Hadj Lajimi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Laboratory of Water, Membranes and Environmental Biotechnologies, Center of Research and Water Technologies, P.O. Box 273, Soliman 8020, Tunisia
| | - Assia Hamdi
- Laboratory of Galenic and Pharmacological Chemical Development of Drugs, University of Pharmacy, Monastir 5000, Tunisia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
| | - Zohra Soua
- Research Unit: Molecular Biology of Leukemia and Lymphoma, Department of Biochemistry, University of Medecine of Sousse, Sousse 4002, Tunisia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorisation of Bioressources, High Institute of Biotechnology University of Monastir, Monastir 5000, Tunisia
- Correspondence:
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorisation of Bioressources, High Institute of Biotechnology University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
5
|
Valverde S, Ares AM, Stephen Elmore J, Bernal J. Recent trends in the analysis of honey constituents. Food Chem 2022; 387:132920. [DOI: 10.1016/j.foodchem.2022.132920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
|
6
|
Bonsignore G, Patrone M, Martinotti S, Ranzato E. "Green" Biomaterials: The Promising Role of Honey. J Funct Biomater 2021; 12:jfb12040072. [PMID: 34940551 PMCID: PMC8708775 DOI: 10.3390/jfb12040072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The development of nanotechnology has allowed us to better exploit the potential of many natural compounds. However, the classic nanotechnology approach often uses both dangerous and environmentally harmful chemical compounds and drastic conditions for synthesis. Nevertheless, “green chemistry” techniques are revolutionizing the possibility of making technology, also for tissue engineering, environmentally friendly and cost-effective. Among the many approaches proposed and among several natural compounds proposed, honey seems to be a very promising way to realize this new “green” approach.
Collapse
|
7
|
Erban T, Shcherbachenko E, Talacko P, Harant K. A single honey proteome dataset for identifying adulteration by foreign amylases and mining various protein markers natural to honey. J Proteomics 2021; 239:104157. [PMID: 33631366 DOI: 10.1016/j.jprot.2021.104157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/18/2022]
Abstract
Honey adulteration is a common practice that deceives consumers and devalues the unique curative and food properties of honey. For marketing, each honey must satisfy an internationally valid Codex standard. One of the quality parameters is diastase/amylase activity, which, if lowered, may be compensated for by the addition of foreign amylases. However, the estimation of enzyme activity does not enable identification of artificially added amylases. 45 honey samples were analyzed using label-free nanoLC-MS/MS proteomics. Four honeys were found to contain the foreign amylases from Aspergillus niger, Bacillus amyloliquefaciens and/or Bacillus licheniformis. This result was confirmed via proof of specificity at multiple levels. Furthermore, we identified a series of plant-related protein groups. Despite plant-related proteins constituting a significant portion of honey proteins, they were minor components compared to the major honey bee-derived proteins. Bioinformatic analysis also provided evidence for aphid and catalase proteins in honey, but the limited specificity of the MS/MS identified peptides must be considered. Overall, we demonstrate a proteomics approach employing LC-MS/MS that is useful for proving adulteration and assessing honey quality. As an resource useful for reference, we provide curated sequence databases. In addition, we provide many markers that are naturally found in honey for future studies. SIGNIFICANCE: Honey is unique natural product used since ancient times as a food and natural medicine. Humans strive to understand honey components because they can characterize different types of honey and be used for authentication and origin assessment. One of the important honey components are proteins. The proteins present in honey can naturally occur in honey, but some of them can be used to mask deficiencies in some honey quality properties. Diastases/amylases are such proteins, and their activity, a measure of honey freshness, can decrease in time or due to processing. To our knowledge, we for the first time specifically identify foreign amylases in honey. However, this study provided new information on other non-honey bee proteins in honey. Thus, this study is also of importance due to its identification of plant and aphid proteins and catalase-related proteins. This study provides a clue explaining the controversial presence of catalase in honey, since catalases can be identified and their origin determined via proteomics.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague, CZ-16106, Czechia.
| | - Elena Shcherbachenko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague, CZ-16106, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia
| |
Collapse
|
8
|
Zhu M, Zhao H, Wang Q, Wu F, Cao W. A Novel Chinese Honey from Amorpha fruticosa L.: Nutritional Composition and Antioxidant Capacity In Vitro. Molecules 2020; 25:E5211. [PMID: 33182368 PMCID: PMC7664916 DOI: 10.3390/molecules25215211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
False indigo (Amorpha fruticosa L., A. fruticosa) is the preferred tree indigenous for windbreak and sand control in Northwest China, while information on nutritional and bioactive characteristics of its honey is rare. Herein, 12 honey of Amorpha fruticosa L. (AFH) were sampled in Northwest China and the nutritional composition was determined. Sixteen mineral element and ten dominant polyphenols content were identified and quantified by ICP-MS (Inductively coupled plasma mass spectrometry) and HPLC-QTOF-MS (High performance liquid chromatography-Quadrupole time-of-flight mass spectrometry), respectively. Moreover, AFH demonstrated high levels of DPPH (1,1-Diphenyl-2-picrylhydrazyl) radical scavenging activity (IC50 100.41 ± 15.35 mg/mL), ferric reducing antioxidant power (2.04 ± 0.29 µmol FeSO4·7H2O/g), and ferrous ion-chelating activity (82.56 ± 16.01 mg Na2EDTA/kg), which were significantly associated with total phenolic contents (270.07 ± 27.15 mg GA/kg) and ascorbic acid contents (213.69 ± 27.87 mg/kg). The cell model verified that AFH exhibited dose-dependent preventive effects on pBR322 plasmid DNA and mouse lymphocyte DNA damage in response to oxidative stress. Taken together, our findings provide evidence for the future application of AFH as a potential antioxidant dietary in food industry.
Collapse
Affiliation(s)
- Min Zhu
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Haoan Zhao
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qian Wang
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| |
Collapse
|
9
|
Liu G, Ye J, Li W, Zhang J, Wang Q, Zhu XA, Miao JY, Huang YH, Chen YJ, Cao Y. Extraction, structural characterization, and immunobiological activity of ABP Ia polysaccharide from Agaricus bisporus. Int J Biol Macromol 2020; 162:975-984. [PMID: 32599242 DOI: 10.1016/j.ijbiomac.2020.06.204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023]
Abstract
The extraction, purification, immunobiological activities, and structure of Agaricus bisporus polysaccharides (ABP) were investigated. Especially we purified and identified the polysaccharides with the highest in vitro immunobiological activity. The extraction conditions of ABP were optimized using single factor and orthogonal experiment. ABP Ia was screened after double purification with DEAE-52 and Sephadex G-200 and showed the best immunoregulatory activity. UV spectra analysis and high-performance gel permeation chromatography results indicated that the ABP Ia fraction did not contain any proteins or nucleotides and was a homogeneous polysaccharide with a relative molecular weight of 784 kDa. Gas chromatography mass spectroscopy results showed that ABP Ia was a heteropolysaccharide consisting of ribose, rhamnose, arabinose, xylose, mannose, glucose, and galactose at a molar ratio of 2.08:4.61:2.45:22.25:36.45:89.22:1.55. FT-IR and periodic acid oxidation analysis indicated that ABP Ia was an α-pyran polysaccharide composed of 1 → 2 and 1 → 4 glycosidic bonds, as well as a possible 1 → 3 glycosidic bond. Furthermore, atomic force microscopy revealed that ABP Ia polysaccharide chains twisted to form a rod-like architecture and, at a 5% concentration, aggregated into a tight structure similar to the shape of a stone forest. These findings identify ABP Ia as a potential functional food ingredient or pharmaceutical for immunoregulation.
Collapse
Affiliation(s)
- Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jing Ye
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ai Zhu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jian-Yin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Hui Huang
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yun-Jiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|