1
|
Luo X, Wang H, Hu X, Gligorovski S, Li X, Sinues P. Practical Applications of Secondary/Extractive Electrospray Ionization (SESI): A Versatile Tool for Real-Time Chemical Analysis. MASS SPECTROMETRY REVIEWS 2025. [PMID: 40384420 DOI: 10.1002/mas.21938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/22/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025]
Abstract
In the 1980s, researchers discovered the remarkable ability of electrospray plumes to effectively ionize gas-phase molecules via secondary ionization. Around 20 years later-coinciding with the ambient mass spectrometry revolution-secondary electrospray ionization (SESI) and extractive electrospray ionization (EESI) coupled to mass spectrometry were revisited and further developed to analyze complex mixtures of gas and aerosol samples in real-time yet with high sensitivity. During the past two decades, these mass spectrometric techniques have been applied across a broad range of applications, such as the detection of illicit drugs, environmental aerosol analysis, and a series of metabolomic studies through the analysis of volatiles emitted from living organisms. This review offers a comprehensive overview of the progress of SESI and EESI applications since their emergence. Finally, we discuss the opportunities, challenges, along with future directions of SESI and EESI techniques.
Collapse
Affiliation(s)
- Xin Luo
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Huiling Wang
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Xiaolan Hu
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Sasho Gligorovski
- Department of Environmental Science and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, China
| | - Xue Li
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Pablo Sinues
- University Children's Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| |
Collapse
|
2
|
Gong Y, Wu D, Yan X, Zhang Q, Zheng W, Li B, Chen H, Wang L. Unveiling the Antibacterial Mechanism of Gold Nanoparticles by Analyzing Bacterial Metabolism at the Molecular Level. Anal Chem 2024; 96:18865-18872. [PMID: 39532662 DOI: 10.1021/acs.analchem.4c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The threat of drug-resistant bacteria is challenging, and it is urgent to explore new antibiotics. Gold nanoparticles (AuNPs) are known to be a group of promising antibacterial agents for replacing conventional antibiotics. Nevertheless, their antibacterial mechanism remains to be elucidated. Herein, we directly observed the interaction between antibacterial AuNPs and bacteria at the molecular level using neutral desorption extractive electrospray ionization mass spectrometry (ND-EESI-MS). We monitored and analyzed the dynamic changes of bacterial metabolites in real time after AuNP treatment. Ten substances representing 3 major metabolic pathways, including protein and nucleic acid synthesis, energy metabolism, and quorum sensing, were identified, indicating that AuNPs may exert antibacterial effects through multiple mechanisms influencing bacterial metabolism and communication. This study deepens the understanding of the antibacterial mechanism of AuNPs and is insightful for designing and screening new antibacterial agents.
Collapse
Affiliation(s)
- Youhuan Gong
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Dong Wu
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Xiaojie Yan
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Qian Zhang
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Huanwen Chen
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Le Wang
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| |
Collapse
|
3
|
Du S, Luo J, Tu X, Ai Z, Wu D, Zou Z, Luo L. Metabolic profiling of Oryza sativa seedlings under chilling stress using nanoliter electrospray ionization mass spectrometry. Food Chem 2024; 438:138005. [PMID: 37983997 DOI: 10.1016/j.foodchem.2023.138005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Low temperatures significantly impact on rice (Oryza sativa) yield and quality. Traditional metabolomic techniques, often involving time-consuming chromatography-mass spectrometry procedures, are currently in use. This study investigated metabolomic responses of rice seedlings under low-temperature stress using nanoliter electrospray ionization mass spectrometry (nanoESI-MS) in combination with multivariate analysis. Results revealed distinct metabolic profiles in 'Qiutianxiaoting' (japonica) and '93-11' (indica) rice seedlings. Among the 36 identified compounds in rice, seven key metabolites, comprising l-glutamic acid, asparagine, tryptophan, citric acid, α-linolenic acid, malic acid, and inositol, were identified as responsive to cold stress. Notably, malic acid content reached 1332.40 μg/g dry weight in Qiutianxiaoting and 1444.13 μg/g in 93-11. Both the qualitative and quantitative results of nanoESI-MS were further confirmed through gas chromatography-mass spectrometry validation. The findings highlight the potential of nanoESI-MS for rapidly characterizing crucial metabolites across diverse plant species under exposure to stress.
Collapse
Affiliation(s)
- Shangguang Du
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, PR China; School of Life Sciences, Nanchang Normal University, Nanchang, 330031, PR China; School of Life Sciences, Nanchang University, Nanchang 330031, PR China
| | - Jun Luo
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, PR China
| | - Xutang Tu
- School of Life Sciences, Nanchang Normal University, Nanchang, 330031, PR China
| | - Zuozuo Ai
- School of Life Sciences, Nanchang Normal University, Nanchang, 330031, PR China
| | - Dong Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, PR China
| | - Zhengrong Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, PR China
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
4
|
Meng Q, Zhang J, Li X, Li Y, Shen X, Li Z, Xu M, Yao C, Chu P, Cui YJ, Guo DA. ASAP-MS combined with mass spectrum similarity and binary code for rapid and intelligent authentication of 78 edible flowers. Food Chem 2024; 436:137776. [PMID: 37862980 DOI: 10.1016/j.foodchem.2023.137776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
This is the first report to use Atmospheric Pressure Solids Analysis Probe (ASAP) for rapid and intelligent authentication of 78 edible flowers. Mass spectra of 451 batches were collected, with each run for 1-2 min. Experimental raw data was automatically extracted and aligned to create a MS database, based on which flowers were identified by MS similarity scores and rankings. To avoid background interference, top 25 ions of each flower were screened and gathered into an m/z pool containing 292 ions (+) and 399 ions (-). Binary sequence IDs were then generated by automatically assigning "1″ for presence and "0″ for absence, resulting in 78 binary codes. Binary code similarity with 78 IDs was used for authentication. Above two approaches were automatically performed by MATLAB, and compared to k-nearest neighbor model, and samples were all successfully identified (100 %). The proposed method provides a high-throughput authentication approach for large-scale food samples.
Collapse
Affiliation(s)
- Qian Meng
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China
| | - Jianqing Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Xiaolan Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Yun Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Xuanjing Shen
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Ziqing Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Meng Xu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Changliang Yao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Pengfei Chu
- Waters Technology (Shanghai) Co., Ltd., Shanghai 201203, China
| | - Ya-Jun Cui
- Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China.
| |
Collapse
|
5
|
Qiu Z, Wei C, Li X, Lai C, Zhan Z, Jin Y, Zhou L, Hao Q, Yang J, Wang S, Kang L, Huang L. Rapid authentication of different herbal medicines by heating online extraction electrospray ionization mass spectrometry. J Pharm Anal 2023; 13:296-304. [PMID: 37102106 PMCID: PMC10123936 DOI: 10.1016/j.jpha.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The rapid and accurate authentication of traditional Chinese medicines (TCMs) has always been a key scientific and technical problem in the field of pharmaceutical analysis. Herein, a novel heating online extraction electrospray ionization mass spectrometry (H-oEESI-MS) was developed for the rapid and direct analysis of extremely complex substances without the requirement for any sample pretreatment or pre-separation steps. The overall molecular profile and fragment structure features of various herbal medicines could be completely captured within 10-15 s, with minimal sample (<0.5 mg) and solvent consumption (<20 μL for one sample). Furthermore, a rapid differentiation and authentication strategy for TCMs based on H-oEESI-MS was proposed, including metabolic profile characterization, characteristic marker screening and identification, and multivariate statistical analysis model validation. In an analysis of 52 batches of seven types of Aconitum medicinal materials, 20 and 21 key compounds were screened out as the characteristic markers of raw and processed Aconitum herbal medicines, respectively, and the possible structures of all the characteristic markers were comprehensively identified based on Compound Discoverer databases. Finally, multivariate statistical analysis showed that all the different types of herbal medicines were well differentiated and identified (R2X > 0.87, R2Y > 0.91, and Q2 > 0.72), which further verified the feasibility and reliability of this comprehensive strategy for the rapid authentication of different TCMs based on H-oEESI-MS. In summary, this rapid authentication strategy realized the ultra-high-throughput, low-cost, and standardized detection of various complex TCMs for the first time, thereby demonstrating wide applicability and value for the development of quality standards for TCMs.
Collapse
Affiliation(s)
- Zidong Qiu
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Corresponding author.
| | - Chaofa Wei
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiang Li
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhilai Zhan
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Jin
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingxiu Hao
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Material Sciences, East China Institute of Technology, Nanchang, 330013, China
| | - Liping Kang
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Corresponding author.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Corresponding author.
| |
Collapse
|
6
|
Qin M, Qian Y, Huang L, Zhong C, Li M, Yu J, Chen H. Extractive electrospray ionization mass spectrometry for analytical evaluation and synthetic preparation of pharmaceutical chemicals. Front Pharmacol 2023; 14:1110900. [PMID: 36713836 PMCID: PMC9880169 DOI: 10.3389/fphar.2023.1110900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Extraction electrospray ionization mass spectrometry (EESI-MS), due to the unique configuration of its ionization module, enables the effective ionization of trace molecules of interest in samples containing complex matrices with high sensitivity, high selectivity and high responding speed without requiring sample pretreatment, and allows high-energy molecular species to undergo specially designed reactions for advanced functionalization. The typical effects of operating conditions on the analytical performance of extraction electrospray ionization mass spectrometry for various pharmaceutical compounds, pharmaceutical preparations and herbal materials were systematically reviewed. The application prospect of extraction electrospray ionization in molecular functionalization for advanced drug discovery is also briefly introduced.
Collapse
Affiliation(s)
- Manman Qin
- Mass Spectrometry Laboratory for BioSample Analysis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Nanchang, Jiangxi, China
| | - Yuqing Qian
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lu Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chao Zhong
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Nanchang, Jiangxi, China
| | - Mingdong Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jun Yu
- Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Huanwen Chen
- Mass Spectrometry Laboratory for BioSample Analysis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,*Correspondence: Huanwen Chen,
| |
Collapse
|
7
|
Xiao W, Sun Y, Xu J, Zhang N, Dong L. uORF-Mediated Translational Regulation of ATF4 Serves as an Evolutionarily Conserved Mechanism Contributing to Non-Small-Cell Lung Cancer (NSCLC) and Stress Response. J Mol Evol 2022; 90:375-388. [PMID: 35962830 PMCID: PMC9375200 DOI: 10.1007/s00239-022-10068-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Diseases and environmental stresses are two distinct challenges for virtually all living organisms. In light of evolution, cellular responses to diseases and stresses might share similar molecular mechanisms, but the detailed regulation pathway is not reported yet. We obtained the transcriptomes and translatomes from several NSCLC (non-small-cell lung cancer) patients as well as from different species under normal or stress conditions. We found that the translation level of gene ATF4 is remarkably enhanced in NSCLC due to the reduced number of ribosomes binding to its upstream open reading frames (uORFs). We also showed the evolutionary conservation of this uORF-ATF4 regulation in the stress response of other species. Molecular experiments showed that knockdown of ATF4 reduced the cell growth rate while overexpression of ATF4 enhanced cell growth, especially for the ATF4 allele with mutated uORFs. Population genetics analyses in multiple species verified that the mutations that abolish uATGs (start codon of uORFs) are highly deleterious, suggesting the functional importance of uORFs. Our study proposes an evolutionarily conserved pattern that enhances the ATF4 translation by uORFs upon stress or disease. We generalized the concept of cellular response to diseases and stresses. These two biological processes may share similar molecular mechanisms.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Yang Sun
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jinpeng Xu
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Na Zhang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lina Dong
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Metabolomic analysis based on EESI-MS indicate blue LED light promotes aliphatic-glucosinolates biosynthesis in broccoli sprouts. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Liu Y, Xue A, Wang S, Hao Y, Cui M, Liu L, Luo L. Metabolic response of Citrus limon to Asian citrus psyllid infestation revealed by EESI-MS and HPLC. Anal Biochem 2020; 609:113973. [PMID: 32997961 DOI: 10.1016/j.ab.2020.113973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022]
Abstract
Asian citrus psyllid (ACP) causes direct and indirect damage to the citrus industry. Extractive electrospray ionization mass spectrometry (EESI-MS) and high performance liquid chromatography (HPLC) were used to detect the metabolites of C. limon leaves at 0, 12, 24, and 72 h after ACP treatment. The EESI-MS results showed that ACP infestation significantly affected metabolites within a short feeding duration with 8 metabolites identified. The metabolites in leaves of these four groups could be distinguished, with 55 peaks showing significant differences including methyl N-methylanthranilate, caffeic acid, and syringic acid. The quantification of 15 phenolic compounds with HPLC-UV method in C. limon leaves after ACP infestation showed that the total content of them reached a peak of 3504.69 μg g-1 at 12 h, with 9 phenolic compounds changing significantly (P < 0.05). A total of 21 metabolites identified in this study were involved in the biosynthesis pathways of flavonoid, flavone and flavonol, isoflavonoid and phenylpropanoid, and the degradation of aminobenzoate. Contents of epicatechin and caffeic acid increased with the feeding time of ACP as detected by both EESI-MS and HPLC. This may be related to plant defense. This study provides novel insights into the biochemical relationship of ACP and its host plants.
Collapse
Affiliation(s)
- Yongquan Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Ahui Xue
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Siyu Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yingbin Hao
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Meng Cui
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Lihua Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
10
|
Surówka E, Potocka I, Dziurka M, Wróbel-Marek J, Kurczyńska E, Żur I, Maksymowicz A, Gajewska E, Miszalski Z. Tocopherols mutual balance is a key player for maintaining Arabidopsis thaliana growth under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:369-383. [PMID: 33007531 DOI: 10.1016/j.plaphy.2020.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/07/2020] [Indexed: 05/26/2023]
Abstract
Enhanced channeling carbon through pathways: shikimate/chorismate, benzenoid-phenylopropanoid or 2-C-methyl-D-erythritol 4-phosphate (MEP) provides a multitude of secondary metabolites and cell wall components and allows plants response to environmental stresses. Through the biosynthetic pathways, different secondary metabolites, like tocopherols (TCs), are bind to mutual dependencies and metabolic loops, that are not yet fully understood. We compared, in parallel, the influence of α- and γ-TCs on metabolites involved in osmoprotective/antioxidative response, and physico-chemical modification of plasma membrane and cell wall. We studied Arabidopsis thaliana Columbia ecotype (WT), mutant vte1 deficient in α- and γ-TCs, mutant vte4 over-accumulating γ-TC instead of α-TC, and transgenic line tmt over-accumulating α-TC; exposed to NaCl. The results indicate that salt stress activates β-carboxylation processes in WT plants and in plants with altered TCs accumulation. In α-TC-deficient plants, NaCl causes ACC decrease, but does not change SA, whose concentration remains higher than in α-TC accumulating plants. α/γ-TCs contents influence carbohydrates, poliamines, phenolic (caffeic, ferrulic, cinnamic) acids accumulation patterns. Salinity results in increased detection of the LM5 galactan and LM19 homogalacturonan epitopes in α-TC accumulating plants, and the LM6 arabinan and MAC207 AGP epitopes in α-TC deficient mutants. Parallel, plants with altered TCs composition show decreased both the cell turgor and elastic modulus determined at the individual cell level. α-TC deficient plants reveal lower values of cell turgor and elastic modulus, but higher cell hydraulic conductivity than α-TC accumulating plants. Under salt stress, α-TC shows stronger regulatory effect than γ-TC through the impact on chloroplastic biosynthetic pathways and ROS/osmotic-modulating compounds.
Collapse
Affiliation(s)
- Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland.
| | - Izabela Potocka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Justyna Wróbel-Marek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Anna Maksymowicz
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Ewa Gajewska
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| |
Collapse
|