1
|
Xu W, Yao J, Ouyang B, Huang Z, Zhang W, Mu W. Substrate specificity study of zearalenone lactonase by analyzing interaction networks of residues near the β6-α6 region. Int J Biol Macromol 2025; 286:138531. [PMID: 39653226 DOI: 10.1016/j.ijbiomac.2024.138531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/13/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Recently, how could microbial lactonase react to the mycotoxin zearalenone (ZEN) and its derivatives such as α-zearalenol (α-ZOL) is still unclear, resulting in limited applications. In this study, the interaction networks of residues near the β6-α6 region in lactonase from Monosporascus sp. GIB2 (ZENM) were analyzed. As a result, the residue M157 in the β6-α6 region was found significant to the specificity of ZENM, and two mutants including ZENMM157V and ZENMM157I that exhibited higher degradation activity than the wild-type (WT) against α-ZOL was achieved. The molecular dynamics simulation showed that the binding free energy of ZENMM157V and ZENMM157I was -38.68 and -40.84 Kcal/mol for α-ZOL, much lower than the wild-type enzyme (-33.03 Kcal/mol). Moreover, approximately a 54° torsion of the C6' hydroxyl group in α-ZOL was presented in mutants ZENMM157V and ZENMM157I conformation, resulting in a shorter distance between the catalytic pocket and α-ZOL.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiayi Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Binbin Ouyang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Dotsenko A, Sinelnikov I, Zorov I, Denisenko Y, Rozhkova A, Shcherbakova L. The Protein Engineering of Zearalenone Hydrolase Results in a Shift in the pH Optimum of the Relative Activity of the Enzyme. Toxins (Basel) 2024; 16:540. [PMID: 39728798 PMCID: PMC11679840 DOI: 10.3390/toxins16120540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
An acidic shift in the pH profile of Clonostachys rosea zearalenone hydrolase (ZHD), the most effective and well-studied zearalenone-specific lactone hydrolase, is required to extend the range of applications for the enzyme as a decontamination agent in the feed and food production industries. Amino acid substitutions were engineered in the active center of the enzyme to decrease the pKa values of the catalytic residues E126 and H242. The T216K substitution provided a shift in the pH optimum by one unit to the acidic region, accompanied by a notable expansion in the pH profile under acidic conditions. The engineered enzyme demonstrated enhanced activity within the pH range of 3-5 and improved the activity within the pH ranging from 6 to 10. The D31N and D31A substitutions also resulted in a two-unit shift in the pH optimum towards acidic conditions, although this was accompanied by a significant reduction in the enzyme activity. The D31S substitution resulted in a shift in the pH profile towards the alkaline region. The alterations in the enzyme properties observed following the T216K substitution were consistent with the conditions required for the ZHD application as decontamination enzymes at acidic pH values (from 3.0 to 6.0).
Collapse
Affiliation(s)
- Anna Dotsenko
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (RAS), 119071 Moscow, Russia; (A.D.); (I.S.); (Y.D.)
| | - Igor Sinelnikov
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (RAS), 119071 Moscow, Russia; (A.D.); (I.S.); (Y.D.)
- All-Russian Research Institute of Phytopathology of RAS, Bolshie Vyazemy, 143050 Moscow, Russia
| | - Ivan Zorov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Yury Denisenko
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (RAS), 119071 Moscow, Russia; (A.D.); (I.S.); (Y.D.)
- All-Russian Research Institute of Phytopathology of RAS, Bolshie Vyazemy, 143050 Moscow, Russia
| | - Aleksandra Rozhkova
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (RAS), 119071 Moscow, Russia; (A.D.); (I.S.); (Y.D.)
| | - Larisa Shcherbakova
- All-Russian Research Institute of Phytopathology of RAS, Bolshie Vyazemy, 143050 Moscow, Russia
| |
Collapse
|
3
|
Xing X, Chen X, You X, Huang J, Xue D. Zearalenone degrading enzyme evolution to increase the hydrolysis efficiency under acidic conditions by the rational design. Food Chem 2024; 456:140088. [PMID: 38878543 DOI: 10.1016/j.foodchem.2024.140088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Based on rational design, zearalenone degrading enzyme was evolved to improve the hydrolysis efficiency under acidic conditions. At pH 4.2 and 37 °C, the activity of the zearalenone degrading enzyme evolved with 8 mutation sites increased from 7.69 U/mg to 38.67 U/mg. Km of the evolved zearalenone degrading enzyme decreased from 283.61 μM to 75.33 μM. The evolved zearalenone degrading enzyme was found to effectively degrade zearalenone in pig stomach chyme. Molecular docking revealed an increase in the number of hydrogen bonds and π-sigma interactions between the evolved zearalenone degrading enzyme and zearalenone. The evolved zearalenone degrading enzyme was valuable for hydrolyzing zearalenone under acidic conditions.
Collapse
Affiliation(s)
- Xingyue Xing
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaowei Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Xihuo You
- School of Bioengineering and Health, Wuhan Textile University, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Agrichina Huawei Biopharmaceutical (Hubei) Co., Ltd, Qichun 435300, PR China
| | - Jie Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Dongsheng Xue
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
4
|
Jiang X, Tehreem S, Rahim K, Wang M, Wu P, Zhang G. Enhancing the thermal stability and activity of zearalenone lactone hydrolase to promote zearalenone degradation via semi-rational design. Enzyme Microb Technol 2024; 180:110499. [PMID: 39191068 DOI: 10.1016/j.enzmictec.2024.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Zearalenone (ZEN) is a fungal toxin produced by Fusarium exospore, which poses a significant threat to both animal and human health due to its reproductive toxicity. Removing ZEN through ZEN lactonase is currently the most effective method reported, however, all published ZEN lactonases suffer from the poor thermal stability, losing almost all activity after 10 min of treatment at 55℃. In this study, we heterologously expressed ZHD11A from Phialophora macrospora and engineered it via semi-rational design. A mutant I160Y-G242S that can retain about 40 % residual activity at 55℃ for 10 min was obtained, which is the most heat-tolerant ZEN hydrolase reported to date. Moreover, the specific activity of the I160Y-G242S was also elevated 2-fold compared to ZHD11A from 220 U/mg to 450 U/mg, which is one of the most active ZEN lactonses reported. Dynamics analysis revealed that the decreased flexibility of the main-chain carbons contributes to increased thermal stability and the improved substrate binding affinity and catalytic turnover contribute to enhanced activity of variant I160Y-G242S. In all, the mutant I160Y-G242S is an excellent candidate for the industrial application of ZEN degradation.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sana Tehreem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meixing Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Zhen H, Hu Y, Xiong K, Li M, Jin W. The occurrence and biological control of zearalenone in cereals and cereal-based feedstuffs: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1344-1359. [PMID: 39102376 DOI: 10.1080/19440049.2024.2385713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Zearalenone, a prominent mycotoxin produced by Fusarium spp., ubiquitously contaminates cereal grains and animal feedstuffs. The thermal stability of zearalenone creates serious obstacles for traditional removal methods, which may introduce new safety issues, or reducing nutritional quality. In contrast, biological technologies provide appealing benefits such as easy to apply and effective, with low toxicity byproducts. Thus, this review aims to describe the occurrence of zearalenone in cereals and cereal-based feedstuffs in the recent 5 years, outline the rules and regulations regarding zearalenone in the major countries, and discuss the recent developments of biological methods for controlling zearalenone in cereals and cereal-based feedstuffs. In addition, this article also reviews the application and the development trend of biological strategies for removal zearalenone in cereals and cereal-based feedstuffs.
Collapse
Affiliation(s)
- Hongmin Zhen
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yumeng Hu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing, China
| | - Mengmeng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
6
|
Liu X, Wang Y, Fang X, Tang Y, Wang G, Guo Y, Yuan J, Zhao L. Characteristics of a Novel Zearalenone Lactone Hydrolase ZHRnZ and Its Thermostability Modification. Int J Mol Sci 2024; 25:9665. [PMID: 39273612 PMCID: PMC11395237 DOI: 10.3390/ijms25179665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite produced by the Fusarium fungi, which widely contaminates grains, food, and feed, causing health hazards for humans and animals. Therefore, it is essential to find effective ZEN detoxification methods. Enzymatic degradation of ZEN is believed to be an eco-friendly detoxification strategy, specifically thermostable ZEN degradation enzymes are needed in the food and feed industry. In this study, a novel ZEN lactone hydrolase ZHRnZ from Rosellinia necatrix was discovered using bioinformatic and molecular docking technology. The recombinant ZHRnZ showed the best activity at pH 9.0 and 45 °C with more than 90% degradation for ZEN, α-zearalenol (α-ZOL), β-zearalenol (β-ZOL) and α-zearalanol (α-ZAL) after incubation for 15 min. We obtained 10 mutants with improved thermostability by single point mutation technology. Among them, mutants E122Q and E122R showed the best performance, which retained more than 30% of their initial activity at 50 °C for 2 min, and approximately 10% of their initial activity at 60 °C for 1 min. The enzymatic kinetic study showed that the catalytic efficiency of E122R was 1.3 times higher than that of the wild-type (WT). Comprehensive consideration suggests that mutant E122R is a promising hydrolase to detoxify ZEN in food and feed.
Collapse
Affiliation(s)
- Xinlan Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
- Eyasclub, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Xin Fang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Gaigai Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
- Eyasclub, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
- Eyasclub, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| |
Collapse
|
7
|
Fang J, Sheng L, Ye Y, Gao S, Ji J, Zhang Y, Sun X. Biochemical Characterization and Application of Zearalenone Lactone Hydrolase Fused with a Multifunctional Short Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18146-18154. [PMID: 39075026 DOI: 10.1021/acs.jafc.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Zearalenone (ZEN) is an estrogenic mycotoxin causing reproductive toxicity in livestock. Currently, lactone hydrolases are used in the enzymatic degradation of ZEN. However, most lactone hydrolases suffer from low degradation efficiency and poor thermal stability. ZHD518, as a documented neutral enzyme for ZEN degradation, exhibits high enzymatic activity under neutral conditions. In this study, a multifunctional peptide S1v1-(AEAEAHAH)2 was fused to the N-terminus of ZHD518. Compared with the wild-type enzyme, the peptide fusion significantly enhanced protein expression by 1.28 times, enzyme activity by 9.27 times, thermal stability by 37.08 times after incubation at 45 °C for 10 min and enzyme stability during long-term storage. Moreover, ZEN concentrations in corn bran, corn germ meal, and corn gluten powder decreased from 5.29 ± 0.04, 5.31 ± 0.03, and 5.30 ± 0.01 μg/g to 0.48 ± 0.05, 0.48 ± 0.06, and 0.21 ± 0.04 μg/g, respectively, following a 60 min treatment with S1v1-GS-ZHD518, resulting in degradation rates of 90.98, 91.00, and 95.32%, respectively. In conclusion, the properties of S1v1-GS-ZHD518, such as its efficient degradability, high temperature resistance and storage resistance, offer the possibility of its application in food or feed.
Collapse
Affiliation(s)
- Jinpei Fang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Song Gao
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| |
Collapse
|
8
|
Liu M, Zhang X, Luan H, Zhang Y, Xu W, Feng W, Song P. Bioenzymatic detoxification of mycotoxins. Front Microbiol 2024; 15:1434987. [PMID: 39091297 PMCID: PMC11291262 DOI: 10.3389/fmicb.2024.1434987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
9
|
Zhou C, He N, Lin X, Liu H, Lu Z, Zhang G. Site-directed display of zearalenone lactonase on spilt-intein functionalized nanocarrier for green and efficient detoxification of zearalenone. Food Chem 2024; 446:138804. [PMID: 38402766 DOI: 10.1016/j.foodchem.2024.138804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
In this study, we prepared a functional organic-inorganic hybrid nanoflower (InHNF) via split intein moiety in a biomineralization process without using organic solvents. InHNF could specifically bind the target enzymes from crude cell lysates within seconds and site-directedly display them on the surface by forming a peptide bond with enzyme's terminal amino acid residue. This unique feature enabled InHNF to increase the specific activity of zearalenone detoxifying enzyme ZHD518 by 40 ∼ 60% at all tested temperatures and prevented enzyme denaturation even under extreme pH conditions (pH 3-11). Furthermore, it exhibited excellent operational stability, with a residual activity of over 70% after eight reaction cycles. Strikingly, InHNF-ZHD518 achieved above 50% ZEN degradation despite the near inactivation of free ZHD518 in beer sample. Overall, InHNF nanocarriers can achieve environmentally friendly, purification-free, and site-directed immobilization of food enzymes and enhance their catalytic properties, making them suitable for a wide range of industrial applications.
Collapse
Affiliation(s)
- Chen Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Nisha He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaofan Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Hailin Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Fruhauf S, Pühringer D, Thamhesl M, Fajtl P, Kunz-Vekiru E, Höbartner-Gussl A, Schatzmayr G, Adam G, Damborsky J, Djinovic-Carugo K, Prokop Z, Moll WD. Bacterial Lactonases ZenA with Noncanonical Structural Features Hydrolyze the Mycotoxin Zearalenone. ACS Catal 2024; 14:3392-3410. [PMID: 38449531 PMCID: PMC10913051 DOI: 10.1021/acscatal.4c00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Zearalenone (ZEN) is a mycoestrogenic polyketide produced by Fusarium graminearum and other phytopathogenic members of the genus Fusarium. Contamination of cereals with ZEN is frequent, and hydrolytic detoxification with fungal lactonases has been explored. Here, we report the isolation of a bacterial strain, Rhodococcus erythropolis PFA D8-1, with ZEN hydrolyzing activity, cloning of the gene encoding α/β hydrolase ZenA encoded on the linear megaplasmid pSFRL1, and biochemical characterization of nine homologues. Furthermore, we report site-directed mutagenesis as well as structural analysis of the dimeric ZenARe of R. erythropolis and the more thermostable, tetrameric ZenAScfl of Streptomyces coelicoflavus with and without bound ligands. The X-ray crystal structures not only revealed canonical features of α/β hydrolases with a cap domain including a Ser-His-Asp catalytic triad but also unusual features including an uncommon oxyanion hole motif and a peripheral, short antiparallel β-sheet involved in tetramer interactions. Presteady-state kinetic analyses for ZenARe and ZenAScfl identified balanced rate-limiting steps of the reaction cycle, which can change depending on temperature. Some new bacterial ZEN lactonases have lower KM and higher kcat than the known fungal ZEN lactonases and may lend themselves to enzyme technology development for the degradation of ZEN in feed or food.
Collapse
Affiliation(s)
- Sebastian Fruhauf
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Dominic Pühringer
- Department
for Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna 1030, Austria
| | - Michaela Thamhesl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Patricia Fajtl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Elisavet Kunz-Vekiru
- Institute
of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology
IFA-Tulln, University of Natural Resources
and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 20, Tulln 3430, Austria
| | - Andreas Höbartner-Gussl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Gerd Schatzmayr
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Gerhard Adam
- Institute
of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Straße
24, Tulln 3430, Austria
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Bld. A13, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Kristina Djinovic-Carugo
- Department
for Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna 1030, Austria
- Department
of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
- European
Molecular Biology Laboratory (EMBL) Grenoble, Grenoble 38000, France
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Bld. A13, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Wulf-Dieter Moll
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| |
Collapse
|
11
|
Shi J, Mwabulili F, Xie Y, Yang Y, Sun S, Li Q, Ma W, Jia H. Characterization, Structural Analysis, and Thermal Stability Mutation of a New Zearalenone-Degrading Enzyme Mined from Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3025-3035. [PMID: 38300990 DOI: 10.1021/acs.jafc.3c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Zearalenone (ZEN) is a widespread mycotoxin that causes serious damage to animal husbandry and poses a threat to human health. A screen of ZEN-degrading soil bacteria yielded Bacillus subtilis YT-4, which yielded 80% ZEN degradation after 6 h and 95% after 36 h. The gene sequence encoding the degradative enzyme ZENY was mined from the genome of YT-4 and expressed in yeast. ZENY is an α/β-hydrolase with an optimal enzyme activity at 37 °C and pH 8. By breaking the lactone ring of ZEN, it produces ZENY-C18H24O5 with a molecular weight of 320.16 g/mol. Sequence comparison and molecular docking analyses identified the catalytic ZENY triad 99S-245H-123E and the primary ZEN-binding mode within the hydrophobic pocket of the enzyme. To improve the thermal stability of the enzyme for industrial applications, we introduced a mutation at the N-terminus, specifically replacing the fifth residue N with V, and achieved a 25% improvement in stability at 45 °C. These findings aim to achieve ZEN biodegradation and provide insight into the structure and function of ZEN hydrolases.
Collapse
Affiliation(s)
- Jinghao Shi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Shumin Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Qian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
12
|
Ouyang B, Zhang W, Guang C, Xu W, Mu W. Identification and Modification of Enzymatic Substrate Specificity through Residue Alteration in the Cap Domain: A Thermostable Zearalenone Lactonase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18943-18952. [PMID: 37990968 DOI: 10.1021/acs.jafc.3c07228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Zearalenone (ZEN) and its derivatives are prevalent contaminants in cereal crops. This study investigated a novel thermostable ZEN lactonase (ZENM) from Monosporascus sp. GIB2. ZENM demonstrated its highest activity at 60 °C, maintaining over 90% relative activity from 50 to 60 °C. Notably, efficient hydrolysis of ZEN and its two derivatives was achieved using ZENM, with specific activities of 333 U/mg for ZEN, 316 U/mg for α-zearalenol (α-ZOL), and 300 U/mg for α-zearalanol (α-ZAL). The activity of ZENM toward α-ZOL is noteworthy as most ZEN lactonases rarely achieve such a high degradation rate of α-ZOL. Based on the sequence-structure analysis, five residues (L123, G163, E171, S199, and S202) conserved in other ZEN lactonases were substituted in ZENM. Of interest was the G163S mutant in the cap domain that displayed enhanced activity toward α-ZOL compared to the wild-type enzyme. Notably, the mutant G163S exhibited higher catalytic activity toward α-ZOL (kcat/Km 0.223 min-1 μM-1) than ZEN (kcat/Km 0.191 min-1 μM-1), preferring α-ZOL as its optimum substrate. In conclusion, a thermostable ZEN lactonase has been reported, and the alteration of residue G163 in the cap domain has been shown to modify the substrate specificity of ZEN lactonase.
Collapse
Affiliation(s)
- Binbin Ouyang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Sun H, He Z, Xiong D, Long M. Mechanisms by which microbial enzymes degrade four mycotoxins and application in animal production: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:256-274. [PMID: 38033608 PMCID: PMC10685049 DOI: 10.1016/j.aninu.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 12/02/2023]
Abstract
Mycotoxins are toxic compounds that pose a serious threat to animal health and food safety. Therefore, there is an urgent need for safe and efficient methods of detoxifying mycotoxins. As biotechnology has continued to develop, methods involving biological enzymes have shown great promise. Biological enzymatic methods, which can fundamentally destroy the structures of mycotoxins and produce degradation products whose toxicity is greatly reduced, are generally more specific, efficient, and environmentally friendly. Mycotoxin-degrading enzymes can thus facilitate the safe and effective detoxification of mycotoxins which gives them a huge advantage over other methods. This article summarizes the newly discovered degrading enzymes that can degrade four common mycotoxins (aflatoxins, zearalenone, deoxynivalenol, and ochratoxin A) in the past five years, and reveals the degradation mechanism of degrading enzymes on four mycotoxins, as well as their positive effects on animal production. This review will provide a theoretical basis for the safe treatment of mycotoxins by using biological enzyme technology.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqi He
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dongwei Xiong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
14
|
Liu Y, Guo Y, Liu L, Tang Y, Wang Y, Ma Q, Zhao L. Improvement of aflatoxin B 1 degradation ability by Bacillus licheniformis CotA-laccase Q441A mutant. Heliyon 2023; 9:e22388. [PMID: 38058637 PMCID: PMC10696099 DOI: 10.1016/j.heliyon.2023.e22388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
Aflatoxin B1 (AFB1) contamination seriously threatens nutritional safety and common health. Bacterial CotA-laccases have great potential to degrade AFB1 without redox mediators. However, CotA-laccases are limited because of the low catalytic activity as the spore-bound nature. The AFB1 degradation ability of CotA-laccase from Bacillus licheniformis ANSB821 has been reported by a previous study in our laboratory. In this study, a Q441A mutant was constructed to enhance the activity of CotA-laccase to degrade AFB1. After the site-directed mutation, the mutant Q441A showed a 1.73-fold higher catalytic efficiency (kcat/Km) towards AFB1 than the wild-type CotA-laccase did. The degradation rate of AFB1 by Q441A mutant was higher than that by wild-type CotA-laccase in the pH range from 5.0 to 9.0. In addition, the thermostability was improved after mutation. Based on the structure analysis of CotA-laccase, the higher catalytic efficiency of Q441A for AFB1 may be due to the smaller steric hindrance of Ala441 than Gln441. This is the first research to enhance the degradation efficiency of AFB1 by CotA-laccase with site-directed mutagenesis. In summary, the mutant Q441A will be a suitable candidate for highly effective detoxification of AFB1 in the future.
Collapse
Affiliation(s)
- Yanrong Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Limeng Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
15
|
Wang Z, Luo F, Jiang S, Selvaraj JN, Zhou Y, Zhang G. Biochemical characterization and molecular modification of a zearalenone hydrolyzing enzyme Zhd11D from Phialophora attinorum. Enzyme Microb Technol 2023; 170:110286. [PMID: 37499311 DOI: 10.1016/j.enzmictec.2023.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
ZEN lactone hydrolase (ZHD) can hydrolyze zearalenone (ZEN) to less or non-toxic product, providing an environment-friendly way for food or feeds-containing ZENs detoxification. Here, a newly identified ZHD from Phialophora attinorum, annotated as Zhd11D, was characterized to exhibit highest activity against ZEN at pH 8.0 and 35 ℃ with a specific activity of 304.7 U/mg, which was far higher than most of the reported ZHDs. A nonspecific protein engineering method was introduced through fusing a segment of amphiphilic short peptide S1 at the N-terminus of Zhd11D, resulting in both improved activity (1.5-fold) and thermostability (2-fold at 40 ℃). Biochemical analysis demonstrated that self-aggregation caused by intermolecular interactions between S1 contributed to the improvement of the enzymatic properties of Zhd11D. Additionally, S1-Zhd11D showed a higher hydrolysis rate of ZEN than Zhd11D in peanut oil.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Feifan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Sijing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Yuling Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China.
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
16
|
Shi Y, Ouyang B, Zhang Y, Zhang W, Xu W, Mu W. Recent developments of mycotoxin-degrading enzymes: identification, preparation and application. Crit Rev Food Sci Nutr 2023; 64:10089-10104. [PMID: 37293851 DOI: 10.1080/10408398.2023.2220402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi during their growth. They not only seriously affect the yield of food crops but also pose a threat to human and animal health. Physical and chemical methods have been widely used to reduce the production and accumulation of mycotoxins in the field or after harvest, but these methods have difficulty in completely removing mycotoxins while keeping the nutrients at the same time. Biodegradation methods using isolated enzymes have shown superiority and potential for modest reaction conditions, high degradation efficiency and degradation products with low toxicity. Therefore, the occurrence, chemical structures, and toxicology of six prevalent mycotoxins (deoxynivalenol, zearalenone, aflatoxin, patulin, fumonisin, and ochratoxin) were described in this manuscript. The identification and application of mycotoxin-degrading enzymes were thoroughly reviewed. It is believed that in the near future, mycotoxin-degrading enzymes are expected to be commercially developed and used in the feed and food industries.
Collapse
Affiliation(s)
- Yan Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Binbin Ouyang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yulei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Hong XZ, Han ZG, Yang JK, Liu YH. The Motion Paradigm of Pre-Dock Zearalenone Hydrolase Predictions with Molecular Dynamics and the Docking Phase with Umbrella Sampling. Molecules 2023; 28:molecules28114545. [PMID: 37299021 DOI: 10.3390/molecules28114545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Zearalenone (ZEN) is one of the most prevalent estrogenic mycotoxins, is produced mainly by the Fusarium family of fungi, and poses a risk to the health of animals. Zearalenone hydrolase (ZHD) is an important enzyme capable of degrading ZEN into a non-toxic compound. Although previous research has investigated the catalytic mechanism of ZHD, information on its dynamic interaction with ZEN remains unknown. This study aimed to develop a pipeline for identifying the allosteric pathway of ZHD. Using an identity analysis, we identified hub genes whose sequences can generalize a set of sequences in a protein family. We then utilized a neural relational inference (NRI) model to identify the allosteric pathway of the protein throughout the entire molecular dynamics simulation. The production run lasted 1 microsecond, and we analyzed residues 139-222 for the allosteric pathway using the NRI model. We found that the cap domain of the protein opened up during catalysis, resembling a hemostatic tape. We used umbrella sampling to simulate the dynamic docking phase of the ligand-protein complex and found that the protein took on a square sandwich shape. Our energy analysis, using both molecular mechanics/Poisson-Boltzmann (Generalized-Born) surface area (MMPBSA) and Potential Mean Force (PMF) analysis, showed discrepancies, with scores of -8.45 kcal/mol and -1.95 kcal/mol, respectively. MMPBSA, however, obtained a similar score to that of a previous report.
Collapse
Affiliation(s)
- Xi-Zhi Hong
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, China
| | - Zheng-Gang Han
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, China
| | - Jiang-Ke Yang
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, China
| | - Yi-Han Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300453, China
| |
Collapse
|
18
|
Tian Z, Ding T, Niu H, Wang T, Zhang Z, Gao J, Kong M, Ming L, Tian Z, Ma J, Luo W, Wang C. 2-Phenylquinoline-polyamine conjugate (QPC): Interaction with bovine serum albumin (BSA). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122875. [PMID: 37276638 DOI: 10.1016/j.saa.2023.122875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
A novel 2-phenylquinoline-polyamine conjugate (QPC) was synthesized and characterized, its interaction with bovine serum albumin (BSA) was evaluated using UV-Vis, fluorescence and circular dichroism (CD) spectroscopy. The results showed that QPC caused a whole train of spectral variation, including enhancement of UV-vis absorption and reduction of fluorescence (FL), indicating QPC-BSA complex formed. FL results showed that the type of FL quenching waslarge static quenching, which was also accompanied with a process of dynamic quenching. Binding constants, thermodynamic parameters and docking results showed that the interaction between QPC and BSA was basically a Van der Waals, hydrogen bond and hydrophobic interaction. Synchronous and 3D-FL analysis revealed that QPC resulted in unapparent conformational alteration of BSA. The docking study suggested QPC was situated at the binding sites II of BSA, and 2-phenylquinoline moiety contributed to the hydrophobic interaction. The results of molecular dynamics revealed QPC altered the conformation of BSA, which showed that the inconsistency between experimental data and theoretical calculation results may be due to the instability of the compound.
Collapse
Affiliation(s)
- Zhiyong Tian
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Tengli Ding
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hanjing Niu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ting Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China
| | - Zhongze Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Jinhua Gao
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ming Kong
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Li Ming
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Zhihui Tian
- The National Supercomputing Center in Zhengzhou, Zhengzhou University, Henan 450001, China
| | - Jing Ma
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Wen Luo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
19
|
Statsyuk NV, Popletaeva SB, Shcherbakova LA. Post-Harvest Prevention of Fusariotoxin Contamination of Agricultural Products by Irreversible Microbial Biotransformation: Current Status and Prospects. BIOTECH 2023; 12:32. [PMID: 37218749 PMCID: PMC10204369 DOI: 10.3390/biotech12020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Biological degradation of mycotoxins is a promising environmentally-friendly alternative to chemical and physical detoxification methods. To date, a lot of microorganisms able to degrade them have been described; however, the number of studies determining degradation mechanisms and irreversibility of transformation, identifying resulting metabolites, and evaluating in vivo efficiency and safety of such biodegradation is significantly lower. At the same time, these data are crucial for the evaluation of the potential of the practical application of such microorganisms as mycotoxin-decontaminating agents or sources of mycotoxin-degrading enzymes. To date, there are no published reviews, which would be focused only on mycotoxin-degrading microorganisms with the proved irreversible transformation of these compounds into less toxic compounds. In this review, the existing information about microorganisms able to efficiently transform the three most common fusariotoxins (zearalenone, deoxinyvalenol, and fumonisin B1) is presented with allowance for the data on the corresponding irreversible transformation pathways, produced metabolites, and/or toxicity reduction. The recent data on the enzymes responsible for the irreversible transformation of these fusariotoxins are also presented, and the promising future trends in the studies in this area are discussed.
Collapse
Affiliation(s)
- Natalia V. Statsyuk
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia (L.A.S.)
| | | | | |
Collapse
|
20
|
Wang H, Lu Z, Lin X, Wang M, Jiang T, Zhao G, Xv J, Jiang S, Zhang G. The N-terminal hydrophobicity modulates a distal structural domain conformation of zearalenone lacton hydrolase and its application in protein engineering. Enzyme Microb Technol 2023; 165:110195. [PMID: 36764030 DOI: 10.1016/j.enzmictec.2023.110195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Zearalenone (ZEN) is one of the most common mycotoxins in maize, wheat, barley, sorghum, rye and other grains. ZEN contamination in feed is an international health issue due to its estrogenicity by competitively binding to estrogen receptors. Enzymatic detoxification of ZEN is superior to physical and chemical methods in terms of safety, environmental impact and preserving nutritional value and palatability, but is hampered by both the currently limited repertoire of detoxifying enzymes and the lack of knowledge about their structure-function relationships. In this study, a ZEN lacton hydrolase candidate (ZHD11C) was identified from thermo-tolerant Fonsecaea multimorphosa CBS 102226, and characterized to be more thermostable than these reported homologues. An intriguing feature of ZHD11C is that the N-terminal hydrophobicity affects its thermal stability and causes conformational change of a domain far from the N-terminal. This finding was successfully applied to enhance the thermostability of the most active ZEN lacton hydrolase ZHD518 through rationally tailoring its N-terminal hydrophobicity. Our results not only provide more insights into the structure-function relationships of ZEN lacton hydrolases, but generate better candidate for bio-decontamination of zearalenone in feed industries.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China
| | - Xiaofan Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China
| | - Meixing Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Tianzhi Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China
| | - Guoqiang Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China
| | - Jiazhan Xv
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China
| | - Sijing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China.
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
21
|
Zhao C, Xie P, Jin J, Jin Q, Wang X. Kinetics, Thermodynamics and Mechanism of Enzymatic Degradation of Zearalenone in Degummed Corn Oil. Toxins (Basel) 2022; 15:19. [PMID: 36668839 PMCID: PMC9867155 DOI: 10.3390/toxins15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The kinetics and thermodynamics of the enzymatic degradation of zearalenone (ZEN) in degummed corn oil were investigated by analyzing the impacts of temperature, pH, ZEN hydrolase dosage and ZEN concentration on the initial reaction rate. The kinetic study found that the maximum reaction rate was 0.97 μmol × kg−1 min−1, the Michaelis constant (Km) was 11,476 μmol × kg−1 and the Michaelis equation was V = 0.97[S]/(11,476 + [S]). The thermodynamic study showed that the activation energy (Ea) was 70.37 kJ·mol−1, the activation enthalpy change of the reaction (ΔH) > 0, the free energy of activation (ΔG) > 0 and the activation entropy change (ΔS) < 0, indicating the reaction could not be spontaneous. The reaction mechanism of ZEN was studied by a hybrid quadrupole orbitrap mass spectrometer. It was found that ZEN first generated the intermediate G/L/D/W-ZEN+H2O, followed by generating the intermediate W-ZEN-H2O under the action of a degrading enzyme. Then, the lactone bond was opened to produce C18H24O6, and finally the decarboxylation product C17H24O4 formed automatically.
Collapse
Affiliation(s)
| | | | | | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | |
Collapse
|
22
|
Fang Y, Zhang Z, Xu W, Zhang W, Guang C, Mu W. Zearalenone lactonase: characteristics, modification, and application. Appl Microbiol Biotechnol 2022; 106:6877-6886. [PMID: 36173450 DOI: 10.1007/s00253-022-12205-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEN) and its derivatives are one of the most contaminated fungal toxins worldwide, posing a severe threat to food security and human life. Traditional physical and chemical detoxifying methods are unsatisfactory due to incomplete detoxification, nutrient loss, and secondary pollutants. In recent years, bioremediation for eliminating fungal toxins has been gradually investigated. ZEN lactone hydrolase (lactonase) has been widely studied because of its high activity, mild conditions, and non-toxic product property. This review comprehensively represents the gene mining, characterization, molecular modification, and application of microbial-derived ZEN lactonases. It is aimed to elucidate the advantages and challenges of ZEN lactonases in industrial application, which also provides perspectives on obtaining innovative and promising biocatalysts for ZEN degradation. KEY POINTS: • A timely and concise review related to enzymatic elimination towards ZEN is shown. • The catalytic conditions and mechanism of ZEN lactonase is presented. • The modification and application of ZEN lactonase are exhibited also.
Collapse
Affiliation(s)
- Yuanyuan Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhenxia Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
23
|
Fang Y, Huang Z, Xu W, Wang C, Sun Y, Zhang W, Guang C, Mu W. Efficient elimination of zearalenone at high processing temperatures by a robust mutant of Gliocladium roseum zearalenone lactonase. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
The replacement of main cap domain to improve the activity of a ZEN lactone hydrolase with broad substrate spectrum. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Wang Y, Chen Y, Jiang L, Huang H. Improvement of the enzymatic detoxification activity towards mycotoxins through structure-based engineering. Biotechnol Adv 2022; 56:107927. [PMID: 35182727 DOI: 10.1016/j.biotechadv.2022.107927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Mycotoxin contamination of food and feed is posing a serious threat to the global food safety and public health. Biological detoxification mediated by enzymes has emerged as a promising approach, as they can specifically degrade mycotoxins into non-toxic ones. However, the low degradation efficiency and stability limit their further application. To optimize the enzymes for mycotoxin removal, modification strategies that combine computational design with their structural data have been developed. Accordingly, this review will comprehensively summarize the recent trends in structure-based engineering to improve the enzyme catalytic efficiency, selectivity and stability in mycotoxins detoxification, which also provides perspectives in obtaining innovative and effective biocatalysts for mycotoxins degradation.
Collapse
Affiliation(s)
- Yanxia Wang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Chen
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; College of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
26
|
Metabolism of Zearalenone in the Rumen of Dairy Cows with and without Application of a Zearalenone-Degrading Enzyme. Toxins (Basel) 2021; 13:toxins13020084. [PMID: 33499402 PMCID: PMC7911295 DOI: 10.3390/toxins13020084] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The mycotoxin zearalenone (ZEN) is a frequent contaminant of animal feed and is well known for its estrogenic effects in animals. Cattle are considered less sensitive to ZEN than pigs. However, ZEN has previously been shown to be converted to the highly estrogenic metabolite α-zearalenol (α-ZEL) in rumen fluid in vitro. Here, we investigate the metabolism of ZEN in the reticulorumen of dairy cows. To this end, rumen-fistulated non-lactating Holstein Friesian cows (n = 4) received a one-time oral dose of ZEN (5 mg ZEN in 500 g concentrate feed) and the concentrations of ZEN and ZEN metabolites were measured in free rumen liquid from three reticulorumen locations (reticulum, ventral sac and dorsal mat layer) during a 34-h period. In all three locations, α-ZEL was the predominant ZEN metabolite and β-zearalenol (β-ZEL) was detected in lower concentrations. ZEN, α-ZEL and β-ZEL were eliminated from the ventral sac and reticulum within 34 h, yet low concentrations of ZEN and α-ZEL were still detected in the dorsal mat 34 h after ZEN administration. In a second step, we investigated the efficacy of the enzyme zearalenone hydrolase ZenA (EC 3.1.1.-, commercial name ZENzyme®, BIOMIN Holding GmbH, Getzersdorf, Austria) to degrade ZEN to the non-estrogenic metabolite hydrolyzed zearalenone (HZEN) in the reticulorumen in vitro and in vivo. ZenA showed a high ZEN-degrading activity in rumen fluid in vitro. When ZenA was added to ZEN-contaminated concentrate fed to rumen-fistulated cows (n = 4), concentrations of ZEN, α-ZEL and β-ZEL were significantly reduced in all three reticulorumen compartments compared to administration of ZEN-contaminated concentrate without ZenA. Upon ZenA administration, degradation products HZEN and decarboxylated HZEN were detected in the reticulorumen. In conclusion, endogenous metabolization of ZEN in the reticulorumen increases its estrogenic potency due to the formation of α-ZEL. Our results suggest that application of zearalenone hydrolase ZenA as a feed additive may be a promising strategy to counteract estrogenic effects of ZEN in cattle.
Collapse
|
27
|
Niu C, Wan X. Engineering a Trypsin-Resistant Thermophilic α-Galactosidase to Enhance Pepsin Resistance, Acidic Tolerance, Catalytic Performance, and Potential in the Food and Feed Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10560-10573. [PMID: 32829638 DOI: 10.1021/acs.jafc.0c02175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
α-Galactosidase has potential applications, and attempts to improve proteolytic resistance of enzymes have important values. We use a novel strategy for genetic manipulation of a pepsin-sensitive region specific for a pepsin-sensitive but trypsin-resistant high-temperature-active Gal27B from Neosartorya fischeri to screen mutants with enhanced pepsin resistance. All enzymes were produced in Pichia pastoris to identify the roles of loop 4 (Gal27B-A23) and its key residue at position 156 (Gly156Arg/Pro/His) in pepsin resistance. Gal27B-A23 and Gly156Arg/Pro/His elevated pepsin resistance, thermostability, stability at low pH, activity toward raffinose (5.3-6.9-fold) and stachyose (about 1.3-fold), and catalytic efficiencies (up to 4.9-fold). Replacing the pepsin cleavage site Glu155 with Gly improved pepsin resistance but had no effect on pepsin resistance when Arg/Pro/His was at position 156. Thus, pepsin resistance could appear to occur through steric hindrance between the residue at the altered site and neighboring pepsin active site. In the presence of pepsin or trypsin, all mutations increased the ability of Gal27B to hydrolyze galactosaccharides in soybean flour (up to 9.6- and 4.3-fold, respectively) and promoted apparent metabolizable energy and nutrient digestibility in soybean meal for broilers (1.3-1.8-fold). The high activity and tolerance to heat, low pH, and protease benefit food and feed industry in a cost-effective way.
Collapse
Affiliation(s)
- Canfang Niu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| |
Collapse
|