1
|
Wu J, Zhang Y, Chen H, Xia Q, Zhao P, Lin Y, Shen G. The Ability to Digest Cellulose Can Significantly Improve the Growth and Development of Silkworms. INSECTS 2024; 15:997. [PMID: 39769599 PMCID: PMC11678529 DOI: 10.3390/insects15120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Cellulose is essential in the growth and development of herbivores. However, its limited utilization by herbivores is a key factor restricting their feed conversion rates. Cellulase can hydrolyze cellulose into glucose, and the addition of exogenous cellulase preparations to feed is an effective method for improving the cellulose utilization rate of ruminants. Nevertheless, the decomposition efficiency of exogenous cellulase is unstable and susceptible to various external factors. In this study, the endoglucanase III gene from Apriona germari (AgEGase III) was introduced into silkworms to investigate whether transgenic silkworms with cellulose-digesting capabilities outperformed normal silkworms in terms of growth, reproduction, and economic traits. The results show that the transgenic silkworms exhibited increased body size, weight, feeding efficiency, and digestibility compared to the wild-type silkworms. The cocoon weight, shell weight, cocoon-shell ratio, and pupa weight were notably elevated by 11%, 37%, 23%, and 9%, respectively. Additionally, the egg weight and egg-laying quantity of the female moth were also significantly increased compared to those of the wild type. Furthermore, feeding transgenic silkworms with an artificial feed containing additional cellulose demonstrated their ability to digest and utilize cellulose, leading to improved growth and development. This study offers theoretical support for the development of transgenic ruminant species that express cellulolytic enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guanwang Shen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Lemas DJ, Du X, Dado-Senn B, Xu K, Dobrowolski A, Magalhães M, Aristizabal-Henao JJ, Young BE, Francois M, Thompson LA, Parker LA, Neu J, Laporta J, Misra BB, Wane I, Samaan S, Garrett TJ. Untargeted Metabolomic Analysis of Lactation-Stage-Matched Human and Bovine Milk Samples at 2 Weeks Postnatal. Nutrients 2023; 15:3768. [PMID: 37686800 PMCID: PMC10490210 DOI: 10.3390/nu15173768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Epidemiological data demonstrate that bovine whole milk is often substituted for human milk during the first 12 months of life and may be associated with adverse infant outcomes. The objective of this study is to interrogate the human and bovine milk metabolome at 2 weeks of life to identify unique metabolites that may impact infant health outcomes. Human milk (n = 10) was collected at 2 weeks postpartum from normal-weight mothers (pre-pregnant BMI < 25 kg/m2) that vaginally delivered term infants and were exclusively breastfeeding their infant for at least 2 months. Similarly, bovine milk (n = 10) was collected 2 weeks postpartum from normal-weight primiparous Holstein dairy cows. Untargeted data were acquired on all milk samples using high-resolution liquid chromatography-high-resolution tandem mass spectrometry (HR LC-MS/MS). MS data pre-processing from feature calling to metabolite annotation was performed using MS-DIAL and MS-FLO. Our results revealed that more than 80% of the milk metabolome is shared between human and bovine milk samples during early lactation. Unbiased analysis of identified metabolites revealed that nearly 80% of milk metabolites may contribute to microbial metabolism and microbe-host interactions. Collectively, these results highlight untargeted metabolomics as a potential strategy to identify unique and shared metabolites in bovine and human milk that may relate to and impact infant health outcomes.
Collapse
Affiliation(s)
- Dominick J. Lemas
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
- Center for Perinatal Outcomes Research, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Xinsong Du
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Bethany Dado-Senn
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Ke Xu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Amanda Dobrowolski
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Marina Magalhães
- Department of Behavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32603, USA;
| | - Juan J. Aristizabal-Henao
- Department of Physiological Science, Center for Environmental and Human Toxicology, College of Veterinary Science, University of Florida, Gainesville, FL 32608, USA;
| | - Bridget E. Young
- Division of Breastfeeding and Lactation Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Magda Francois
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Lindsay A. Thompson
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Leslie A. Parker
- Center for Perinatal Outcomes Research, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Josef Neu
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Jimena Laporta
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Ismael Wane
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Samih Samaan
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Timothy J. Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| |
Collapse
|
3
|
Sharma H, Ozogul F. Mass spectrometry-based techniques for identification of compounds in milk and meat matrix. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:43-76. [PMID: 37236734 DOI: 10.1016/bs.afnr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Food including milk and meat is often viewed as the mixture of different components such as fat, protein, carbohydrates, moisture and ash, which are estimated using well-established protocols and techniques. However, with the advent of metabolomics, low-molecular weight substances, also known as metabolites, have been recognized as one of the major factors influencing the production, quality and processing. Therefore, different separation and detection techniques have been developed for the rapid, robust and reproducible separation and identification of compounds for efficient control in milk and meat production and supply chain. Mass-spectrometry based techniques such as GC-MS and LC-MS and nuclear magnetic resonance spectroscopy techniques have been proven successful in the detailed food component analysis owing to their associated benefits. Different metabolites extraction protocols, derivatization, spectra generated, data processing followed by data interpretation are the major sequential steps for these analytical techniques. This chapter deals with not only the detailed discussion of these analytical techniques but also sheds light on various applications of these analytical techniques in milk and meat products.
Collapse
Affiliation(s)
- Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
4
|
Jia W, Du A, Fan Z, Shi L. Novel top-down high-resolution mass spectrometry-based metabolomics and lipidomics reveal molecular change mechanism in A2 milk after CSN2 gene mutation. Food Chem 2022; 391:133270. [DOI: 10.1016/j.foodchem.2022.133270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 12/18/2022]
|
5
|
Hyuk Suh J. Critical review: metabolomics in dairy science - evaluation of milk and milk product quality. Food Res Int 2022; 154:110984. [DOI: 10.1016/j.foodres.2022.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
|
6
|
Chen L, Qu B, Wang H, Liu H, Guan Y, Zhou J, Zhang J. The effect of curculigo orchioides (Xianmao) on kidney energy metabolism and the related mechanism in rats based on metabolomics. Food Sci Nutr 2021; 9:6194-6212. [PMID: 34760250 PMCID: PMC8565213 DOI: 10.1002/fsn3.2573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/18/2021] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
The Chinese materia medica Xianmao (XM) is widely used in Chinese clinics and the traditional Chinese medicine diets. Although XM is often used to study its kidney-yang effect, the research on its effect on kidney energy metabolism and its mechanism is still relatively lacking. In this study, rats were given different doses of XM water extract for 4 weeks. Biochemical method was used to detect the content of serum biochemical indexes of liver and kidney function and blood lipid indicators, and HE staining method was used to observe the histopathological of liver and kidney in rats. The kidney Na+-K+-ATPase, Ca2+-Mg2+-ATPase, SDH (succinate dehydrogenase) enzyme activity, and the content of ATP in rats were measured. Metabolomics technology was used to analyze the potential biomarkers related to the effects of XM on kidney energy metabolism, and then, the metabolic pathways were analyzed. RT-PCR was used to detect the expression of Ampk, Sirt1, Ppar-α, and Pgc-1α mRNA in kidney of rats. The results showed, compared with the blank control group, there was no significant effect on liver and kidney function in XMH, XMM, and XML groups. These significantly increased the kidney Na+-K+-ATPase, Ca2+-Mg2+-ATPase, SDH enzyme activity, and ATP content in XMH, XMM, and XML groups. Mitochondrial metabolic rate was inhibited in XMH group, but it was significantly increased in XMM and XML groups. The number of mitochondria was increased in XMH, XMM, and XML groups. Overall, these effects may be mediated by TCA cycle metabolism, butanoate metabolism, propanoate metabolism, alanine, aspartate, and glutamate metabolism, retinol metabolism, purine metabolism, pentose phosphate metabolism, aminoacyl-tRNA biosynthesis, valine, leucine, and isoleucine biosynthesis, and degradation metabolism pathways, as well as by increasing expression of upstream genes Ampk, Sirt1, Ppar-α, and Pgc-1α mRNA.
Collapse
Affiliation(s)
- Limei Chen
- The Affiliated Hospital of Jiangxi University of CMNanchangChina
- Jiangxi University of Chinese MedicineNanchangChina
| | - Baohua Qu
- Nanchang Institute of Science & TechnologyNanchangChina
| | - Hui Wang
- Jiangxi University of Chinese MedicineNanchangChina
| | - Hongning Liu
- Jiangxi University of Chinese MedicineNanchangChina
| | - Yongmei Guan
- Jiangxi University of Chinese MedicineNanchangChina
| | | | - Jiaqi Zhang
- Jiangxi University of Chinese MedicineNanchangChina
| |
Collapse
|
7
|
Liu W, Chen H, Li L, Dong M, Zhang Z, Wan Y, Jin W. Proteomic analysis of the seeds of transgenic rice lines and the corresponding nongenetically modified isogenic variety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1869-1878. [PMID: 32898281 DOI: 10.1002/jsfa.10802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND An isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis was employed to study the seeds of two genetically modified (GM) rice lines, T2A-1 and T1C-19, and their nontransgenic isogenic variety, MH63, to investigate the unintended effects of genetic modification. RESULTS A total of 3398 proteins were quantitatively identified. Seventy-seven differentially abundant proteins (DAPs) were identified in the T2A-1/MH63 comparison, and 70 and 7 of these DAPs were upregulated and downregulated, respectively. A pathway enrichment analysis showed that most of these DAPs participated in metabolic pathways and protein processing in endoplasmic reticulum and were ribosome components. Some 181 DAPs were identified from the T1C-19/MH63 comparison, and these included 115 upregulated proteins and 66 downregulated proteins. The subsequent pathway enrichment analysis showed that these DAPs mainly participated in protein processing in endoplasmic reticulum and carbon fixation in photosynthetic organisms and were ribosome components. None of these DAPs were identified as new unintended toxins or allergens, and only changes in abundance were detected. Fifty-four co-DAPs were identified in the seeds of the two GM rice lines, and protein-protein interaction analysis of these co-DAPs demonstrated that some interacting proteins were involved in protein processing in endoplasmic reticulum and metabolic pathways, whereas others were identified as ribosome components. Representative co-DAPs and proteins related to nutrients were analyzed using qRT-PCR to determine their transcriptional levels. CONCLUSIONS The results suggested that the seed proteomic profiles of the two GM rice lines studied were not substantially altered from those of their natural isogenic control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weixiao Liu
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, PR China
| | - Hao Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Liang Li
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, PR China
| | - Mei Dong
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, PR China
| | - Zhe Zhang
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, PR China
| | - Yusong Wan
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, PR China
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, PR China
| |
Collapse
|
8
|
Hua R, Liu J, Li Y, Fan Y, Zeng B, Geng G, Li Q. Novel Functional Recombinant Human Follicle-Stimulating Hormone Acquired from Goat Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2793-2804. [PMID: 33645971 DOI: 10.1021/acs.jafc.0c07208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An animal mammary bioreactor is regarded as an excellent biological system which is applied to produce large-scale recombinant proteins in milk. However, there are no effective methods to produce a large amount of some pharmaceutical proteins, such as human follicle-stimulating hormone (FSH), by large animal mammary gland bioreactors due to the fact that accumulation of excessive bioactive FSH might cause serious diseases in animals. Here, we report a novel strategy of preparing recombinant human FSH (rhFSH) from goat mammary glands, which could avoid the accumulation of bioactive FSH in goats. First, the single inactive FSHα and FSHβ subunits expressed in goat mammary epithelial cells and goat mammary glands were performed to reassemble in vitro and were found to self-assemble into a complete heterodimer rhFSH at 4 °C and pH 7.4. Further, a cyclic adenosine monophosphate (cAMP) induction assay showed that the cAMP levels in cell lysate of HEK 293/FSHR cells were increased by about 8-fold in reassembled rhFSH groups than that in the control group (P < 0.01). Pharmacokinetic analysis indicated that the reassembled rhFSH from goat mammary glands was comparable to that of the commercially available Gonal-F (P > 0.05). In addition, the increasing dose of reassembled rhFSH significantly promoted ovulation of mouse and ovary weight gain of Sprague Dawley rat compared with the control groups and maximum values were up to 3-fold (P < 0.01) and 2.8-fold (P < 0.01), respectively. The reassembled rhFSH showed a similar effect to Gonal-F in inducing expression of FSH target genes in vivo and activating the PI3K pathway in granulosa cells. Our study developed a novel method to produce rhFSH and provided the basis for preparing FSH by the goat mammary gland bioreactor with less health problems on the producing animals.
Collapse
Affiliation(s)
- Rongmao Hua
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Jianxi Liu
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, P. R. China
| | - Yuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Yan Fan
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, P. R. China
| | - Bin Zeng
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, P. R. China
| | - Guoxia Geng
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, P. R. China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|