1
|
Yeh TS, Blacker D, Willett WC. Dietary Factors and Cognitive Function: with a Focus on Subjective Cognitive Decline. Curr Nutr Rep 2025; 14:62. [PMID: 40285979 DOI: 10.1007/s13668-025-00638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE OF THE REVIEW Age-related cognitive decline is an important global challenge. Substantial evidence suggests that diet may prevent or delay cognitive aging. This narrative review examines recent literature on how dietary factors influence cognitive function, with a focus on subjective cognitive decline (SCD). RECENT FINDINGS Higher intakes of flavonoids, carotenoids, and plant-based protein were associated with lower odds of SCD. Berries, citrus fruits and juices, carotenoid-rich and green leafy vegetables, and beans/legumes were among the foods with the strongest inverse associations with SCD. Healthy dietary patterns, such as the Mediterranean and MIND diet, may be beneficial for maintaining subjective cognitive function. Healthy choice of diet may play a role in lowering the risk of late-life SCD.
Collapse
Affiliation(s)
- Tian-Shin Yeh
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St, Taipei, 11031, Taiwan.
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei, 23561, Taiwan.
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Nutrition and Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK.
| | - Deborah Blacker
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition and Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
2
|
Sagan B, Czerny B, Stasiłowicz-Krzemień A, Szulc P, Skomra U, Karpiński TM, Lisiecka J, Kamiński A, Kryszak A, Zimak-Krótkopad O, Cielecka-Piontek J. Anticholinesterase Activity and Bioactive Compound Profiling of Six Hop ( Humulus lupulus L.) Varieties. Foods 2024; 13:4155. [PMID: 39767097 PMCID: PMC11675283 DOI: 10.3390/foods13244155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Hops (Humulus lupulus L.) are widely recognized for their use in brewing, but they also possess significant pharmacological properties due to their rich bioactive compounds, with many varieties exhibiting diverse characteristics. This study investigates the chemical composition and biological activities of extracts from six hop varieties, focusing on quantifying xanthohumol and lupulone using High-Performance Liquid Chromatography (HPLC) and Total Phenolic Content (TPC) analysis. The hop varieties demonstrated significant variability in bioactive compound concentrations, with Aurora showing the highest xanthohumol (0.665 mg/g) and Zwiegniowski the highest lupulone (9.228 mg/g). TPC analysis revealed Aurora also had the highest phenolic content (22.47 mg GAE/g). Antioxidant activities were evaluated using DPPH, ABTS, CUPRAC, and FRAP assays, with Aurora and Oregon Fuggle displaying the most potent capacities. Aurora, in particular, showed the highest activity across multiple assays, including significant acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase inhibition, with IC50 values of 24.39 mg/mL, 20.38 mg/mL, and 9.37 mg/mL, respectively. The chelating activity was also assessed, with Apolon demonstrating the strongest metal ion binding capacity (IC50 = 1.04 mg/mL). Additionally, Aurora exhibited the most effective hyaluronidase inhibition (IC50 = 10.27 mg/mL), highlighting its potential for anti-inflammatory applications. The results underscore the influence of genetic and environmental factors on the bioactive compound profiles of hop varieties and their biological activity offering promising avenues for pharmaceutical and nutraceutical applications. However, further studies are needed to fully understand the potential interactions between hop cones components.
Collapse
Affiliation(s)
- Bartłomiej Sagan
- Department of Neurosurgery and Pediatric Neurosurgery, Pomeranian Medical University Hospital No. 1 in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 70-204 Szczecin, Poland
| | - Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (J.C.-P.)
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Urszula Skomra
- Institute of Soil Science and Plant Cultivation State Research Institute, Department of Biotechnology and Plant Breeding, Czartoryskich 8 Str., 24-100 Puławy, Poland;
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland;
| | - Jolanta Lisiecka
- Department of Vegetable Crops, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Pomeranian Medical University Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Aleksandra Kryszak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| | - Oskar Zimak-Krótkopad
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| |
Collapse
|
3
|
Kanatome A, Takara T, Umeda S, Ano Y. Effects of matured hop bitter acids on heart rate variability and cognitive performance: A randomized placebo-controlled crossover trial. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
4
|
Yu H, Li Q, Xie J, Chen C, Lou X, Ai L, Tian H. Characterization of Bitter Compounds in Shaoxing Huangjiu by Quantitative Measurements, Taste Recombination, and Omission Experiments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12907-12915. [PMID: 36183262 DOI: 10.1021/acs.jafc.2c02867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excessive and uncoordinated bitterness of Shaoxing Huangjiu, a traditional Chinese rice wine, reduces its acceptance by consumers. To determine the compounds responsible for this bitterness, gas chromatography-mass spectrometry and high-performance liquid chromatography were performed on four types of Shaoxing Huangjiu (Yuanhong, Huadiao, Shanniang, and Xiangxue wine) for targeted quantitation of candidate compounds known to contribute to bitterness. Calculations of dose-over-threshold factors revealed that isoamyl alcohol, 1-hexanol, phenylethanol, ethyl butyrate, ethyl lactate, furfural, histidine, and arginine were important bitter compounds. Taste recombination experiments demonstrated that a recombination model constructed using the screened known bitter compounds showed good similarity with the original sample in bitter taste. Furthermore, omission experiments revealed that isobutanol, isoamyl alcohol, 1-hexanol, phenylethanol, ethyl acetate, ethyl butyrate, ethyl lactate, furfural, arginine, and valine were the compounds affecting the bitter taste perception. This study provides a certain guiding effect on the bitterness control and taste improvement of Shaoxing Huangjiu.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qiaowei Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingru Xie
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xinman Lou
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
5
|
He Y, Zhao J, Yin H, Deng Y. Transcriptome Analysis of Viable but Non-Culturable Brettanomyces bruxellensis Induced by Hop Bitter Acids. Front Microbiol 2022; 13:902110. [PMID: 35707174 PMCID: PMC9189414 DOI: 10.3389/fmicb.2022.902110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The viable but non-culturable (VBNC) state has been studied in detail in bacteria. However, it has received much less attention in eukaryotic cells. The induction of a VBNC beer-spoilage yeast (Brettanomyces bruxellensis) by hop bitter acids with different concentrations and its recovery were studied in this work. B. bruxellensis cells were completely induced into the VBNC state by treatment of 250 mg/L hop bitter acids for 2 h. The addition of catalase at a concentration of 2,000 U/plate on YPD agars enabled these VBNC cells to recover their culturability within 2 days. Moreover, the transcriptome profiling revealed that 267 and 197 genes were significantly changed upon VBNC state entry and resuscitation, respectively. The differentially expressed genes involved in the peroxisome activities, ABC transporter, organic acid metabolism, and TCA cycle were mainly downregulated in the VBNC cells. In contrast, the amino acid and carbohydrate metabolism, cell division, and DNA replication were promoted. This study supplies a theoretical basis for microbial risk assessment in the brewing industry.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Junfeng Zhao
- College of Food Science and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Yuan Deng
- Animal Products Processing Laboratory, Hunan Institute of Animal Husbandry and Veterinary Science, Changsha, China
- *Correspondence: Yuan Deng
| |
Collapse
|
6
|
Rivaroli S, Calvo-Porral C, Spadoni R. Using food choice questionnaire to explain Millennials’ attitudes towards craft beer. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2021.104408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Zhang Y, Song S, Li H, Wang X, Song L, Xue J. Polysaccharide from Ganoderma lucidum alleviates cognitive impairment in a mouse model of chronic cerebral hypoperfusion by regulating CD4 +CD25 +Foxp3 + regulatory T cells. Food Funct 2022; 13:1941-1952. [PMID: 35088782 DOI: 10.1039/d1fo03698j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ganoderma lucidum (G. lucidum) is a kind of edible and medicinal mushroom. G. lucidum polysaccharide-1 (GLP-1) is one of the polysaccharides purified from crude GLP. Chronic cerebral hypoperfusion (CCH) as the common pathological basis of various forms of dementia is an important cause of cognitive impairment. In this study, a step-down test was used to evaluate the cognitive ability of CCH mice. Flow cytometry was used to detect the proportion of CD4+CD25+Foxp3+ regulatory T (Foxp3+Treg) cells. ELISA analysis and western blot analysis were used to detect the transforming growth factor-β1 (TGF-β1) and Interleukin-10 (IL-10) levels that Foxp3+Treg cells secreted. Metabolomic analysis based on gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of GLP-1 on dysfunctional metabolism caused by inflammation. Results indicate that GLP-1 exhibited an alleviating cognitive impairment effect on CCH mice. The mechanism was related to GLP-1 by increasing Foxp3+Treg cell levels to increase levels of IL-10 and TGF-β1 and regulate abnormal energy metabolism. These findings could provide preliminary results to exploit G. lucidum as a health care product or functional food for the adjuvant therapy of cognitive impairment of CCH.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| | - Shuang Song
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Haitao Li
- Department of Pathology, Traditional Chinese Medicine Academy of Sciences of Jilin Province, Changchun 130021, PR China
| | - Xinyan Wang
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Lianlian Song
- Department of Pathology, Traditional Chinese Medicine Academy of Sciences of Jilin Province, Changchun 130021, PR China
| | - Jianfei Xue
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| |
Collapse
|
8
|
Fukuda T, Akiyama S, Takahashi K, Iwadate Y, Ano Y. Effect of non-alcoholic beer containing matured hop bitter acids on mood states in healthy adults: A single-arm pilot study. Nurs Health Sci 2021; 24:7-16. [PMID: 34741379 PMCID: PMC9300118 DOI: 10.1111/nhs.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the effect of non-alcoholic beer containing matured hop bitter acids on mood states among healthy adults older than 20 years. This study was an open-label longitudinal intervention design in which each participant served as their control. For three weeks, we evaluated the effect of non-alcoholic beer containing 35 mg of matured hop bitter acids on mood, sleep quality, and work performance. The data of 97 participants (age range: 23-72 years, median age: 42) were analyzed. After the intervention, we found that matured hop bitter acids significantly improved total mood state, including anxiety, depression, fatigue, and vigor, compared with the baseline. Furthermore, sleep quality and absolute presenteeism were significantly improved after the intervention compared with the baseline. The present exploratory study suggested that 3-week supplementation with matured hop bitter acids improved mood and peripheral symptoms in persons of a wide range of ages. Although further investigation is needed, the findings suggested that non-alcoholic beer in daily life might become a choice for maintaining mood states. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Shiori Akiyama
- Kirin Central Institute, Kirin Holdings Company, Limited
| | | | - Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine
| | - Yasuhisa Ano
- Kirin Central Institute, Kirin Holdings Company, Limited
| |
Collapse
|
9
|
Gutierrez L, Folch A, Rojas M, Cantero JL, Atienza M, Folch J, Camins A, Ruiz A, Papandreou C, Bulló M. Effects of Nutrition on Cognitive Function in Adults with or without Cognitive Impairment: A Systematic Review of Randomized Controlled Clinical Trials. Nutrients 2021; 13:nu13113728. [PMID: 34835984 PMCID: PMC8621754 DOI: 10.3390/nu13113728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/06/2023] Open
Abstract
New dietary approaches for the prevention of cognitive impairment are being investigated. However, evidence from dietary interventions is mainly from food and nutrient supplement interventions, with inconsistent results and high heterogeneity between trials. We conducted a comprehensive systematic search of randomized controlled trials (RCTs) published in MEDLINE-PubMed, from January 2018 to July 2021, investigating the impact of dietary counseling, as well as food-based and dietary supplement interventions on cognitive function in adults with or without cognitive impairment. Based on the search strategy, 197 eligible publications were used for data abstraction. Finally, 61 articles were included in the analysis. There was reasonable evidence that dietary patterns, as well as food and dietary supplements improved cognitive domains or measures of brain integrity. The Mediterranean diet showed promising results, whereas the role of the DASH diet was not clear. Healthy food consumption improved cognitive function, although the quality of these studies was relatively low. The role of dietary supplements was mixed, with strong evidence of the benefits of polyphenols and combinations of nutrients, but with low evidence for PUFAs, vitamin D, specific protein, amino acids, and other types of supplements. Further well-designed RCTs are needed to guide the development of dietary approaches for the prevention of cognitive impairment.
Collapse
Affiliation(s)
- Laia Gutierrez
- Nutrition and Metabolic Disorders Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain; (L.G.); (A.F.); (M.R.); (J.F.)
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
| | - Alexandre Folch
- Nutrition and Metabolic Disorders Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain; (L.G.); (A.F.); (M.R.); (J.F.)
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
| | - Melina Rojas
- Nutrition and Metabolic Disorders Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain; (L.G.); (A.F.); (M.R.); (J.F.)
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
| | - José Luis Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (J.L.C.); (M.A.)
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain; (A.C.); (A.R.)
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (J.L.C.); (M.A.)
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain; (A.C.); (A.R.)
| | - Jaume Folch
- Nutrition and Metabolic Disorders Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain; (L.G.); (A.F.); (M.R.); (J.F.)
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain; (A.C.); (A.R.)
| | - Antoni Camins
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain; (A.C.); (A.R.)
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), University of Barcelona, 08035 Barcelona, Spain
| | - Agustín Ruiz
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain; (A.C.); (A.R.)
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Christopher Papandreou
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Mònica Bulló
- Nutrition and Metabolic Disorders Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain; (L.G.); (A.F.); (M.R.); (J.F.)
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-97-775-9388
| |
Collapse
|
10
|
Rodrigues Arruda T, Fontes Pinheiro P, Ibrahim Silva P, Campos Bernardes P. Exclusive Raw Material for Beer Production? Addressing Greener Extraction Techniques, the Relevance, and Prospects of Hops (Humulus lupulus L.) for the Food Industry. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02716-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Roheger M, Hennersdorf X, Riemann S, Flöel A, Meinzer M. A systematic review and network meta-analysis of interventions for subjective cognitive decline. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12180. [PMID: 34268448 PMCID: PMC8274308 DOI: 10.1002/trc2.12180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2020] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Subjective cognitive decline (SCD) is considered a risk factor for Alzheimer's disease (AD), highlighting the need for identifying and ranking effective interventions. This was addressed in a systematic review and network meta-analysis (NMA) of pharmacological and non-pharmacological interventions for SCD. METHODS MEDLINE, Web of Science Core Collection, CENTRAL, and PsycINFO were searched for randomized controlled trials (RCTs) investigating effects on memory, global cognition, and quality of life. Random-effect model NMAs were conducted. The Cochrane Risk-of-Bias-2 tool assessed methodological quality. Prospero-Registration: CRD42020180457. RESULTS The systematic review included 56 RCTs. Education programs were most effective for improving memory, second most effective for improving global cognition. Quality of life and adverse events could not be included due to insufficient data. Overall methodological quality of studies was low. CONCLUSION Education programs were most effective for improving memory and cognition, warranting further research into effective elements of this intervention. There is urgent need to address identified methodological shortcomings in SCD intervention research.
Collapse
Affiliation(s)
- Mandy Roheger
- Department of NeurologyUniversity Medicine GreifswaldGreifswaldGermany
| | | | - Steffen Riemann
- Department of NeurologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Agnes Flöel
- Department of NeurologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Marcus Meinzer
- Department of NeurologyUniversity Medicine GreifswaldGreifswaldGermany
| |
Collapse
|
12
|
Redox and Anti-Inflammatory Properties from Hop Components in Beer-Related to Neuroprotection. Nutrients 2021; 13:nu13062000. [PMID: 34200665 PMCID: PMC8226943 DOI: 10.3390/nu13062000] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Beer is a fermented beverage widely consumed worldwide with high nutritional and biological value due to its bioactive components. It has been described that both alcoholic and non-alcoholic beer have several nutrients derived from their ingredients including vitamins, minerals, proteins, carbohydrates, and antioxidants that make beer a potential functional supplement. Some of these compounds possess redox, anti-inflammatory and anticarcinogenic properties making the benefits of moderate beer consumption an attractive way to improve human health. Specifically, the hop cones used for beer brewing provide essential oils, bitter acids and flavonoids that are potent antioxidants and immune response modulators. This review focuses on the redox and anti-inflammatory properties of hop derivatives and summarizes the current knowledge of their neuroprotective effects.
Collapse
|
13
|
Fukuda T, Ohnuma T, Obara K, Kondo S, Arai H, Ano Y. Supplementation with Matured Hop Bitter Acids Improves Cognitive Performance and Mood State in Healthy Older Adults with Subjective Cognitive Decline. J Alzheimers Dis 2021; 76:387-398. [PMID: 32474473 PMCID: PMC7369117 DOI: 10.3233/jad-200229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Prevention of age-related cognitive decline and depression is becoming urgent because of rapid growing aging populations. Effects of vagal nerve activation on brain function by food ingredients are inadequately investigated; matured hop bitter acid (MHBA) administration reportedly improves cognitive function and depression via vagal nerve activation in model mice. OBJECTIVE We investigated the effects of MHBA supplementation on cognitive function and mood state in healthy older adults with perceived subjective cognitive decline. METHODS Using a randomized double-blind placebo-controlled trial design, 100 subjects (aged 45-69 years) were randomly assigned into placebo (n = 50) and MHBA (n = 50) groups, and received placebo or MHBA capsules daily for 12 weeks. RESULTS Symbol Digit Modalities Test (SDMT) score assessing divided attention at week 12 was significantly higher (p = 0.045) and β-endorphin at week 12 was significantly lower (p = 0.043) in the subjects receiving MHBA. Transthyretin in serum, a putative mild cognitive impairment marker, was significantly higher at week 12 in the MHBA group than in the placebo group (p = 0.048). Subgroup analysis classified by the subjective cognitive decline questionnaire revealed that in addition to improved SDMT scores, memory retrieval assessed using the standard verbal paired-associate learning tests and the Ray Verbal Learning Test at week 12 had significantly improved in the subgroup with perceived subjective cognitive decline and without requirement for medical assistance in the MHBA group compared with that in the placebo group. CONCLUSION This study suggested that MHBA intake improves cognitive function, attention, and mood state in older adults.
Collapse
Affiliation(s)
- Takafumi Fukuda
- KIRIN Central Research Institute, Kirin Holdings Company, Ltd., Kanagawa, Japan
| | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kuniaki Obara
- KIRIN Central Research Institute, Kirin Holdings Company, Ltd., Kanagawa, Japan
| | | | - Heii Arai
- Department of Psychiatry, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yasuhisa Ano
- KIRIN Central Research Institute, Kirin Holdings Company, Ltd., Kanagawa, Japan
| |
Collapse
|
14
|
Hop Bitter Acids Increase Hippocampal Dopaminergic Activity in a Mouse Model of Social Defeat Stress. Int J Mol Sci 2020; 21:ijms21249612. [PMID: 33348553 PMCID: PMC7766517 DOI: 10.3390/ijms21249612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
As daily lifestyle is closely associated with mental illnesses, diet-based preventive approaches are receiving attention. Supplementation with hop bitter acids such as iso-α-acids (IAA) and mature hop bitter acids (MHBA) improves mood states in healthy older adults. However, the underlying mechanism remains unknown. Since acute oral consumption with IAA increases dopamine levels in hippocampus and improves memory impairment via vagal nerve activation, here we investigated the effects of chronic administration of hop bitter acids on the dopaminergic activity associated with emotional disturbance in a mouse model of repeated social defeat stress (R-SDS). Chronic administration of IAA and MHBA significantly increased dopaminergic activity based on the dopamine metabolite to dopamine ratio in the hippocampus and medial prefrontal cortex following R-SDS. Hippocampal dopaminergic activity was inversely correlated with the level of R-SDS-induced social avoidance with or without IAA administration. Therefore, chronic treatment with hop bitter acids enhances stress resilience-related hippocampal dopaminergic activity.
Collapse
|
15
|
Bitter taste receptor activation by hop-derived bitter components induces gastrointestinal hormone production in enteroendocrine cells. Biochem Biophys Res Commun 2020; 533:704-709. [PMID: 33160623 DOI: 10.1016/j.bbrc.2020.10.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Matured hop bitter acids (MHBA) are bitter acid oxides derived from hops, widely consumed as food ingredients to add bitterness and flavor in beers. Previous studies have suggested a potential gut-brain mechanism in which MHBA simulates enteroendocrine cells to produce cholecystokinin (CCK), a gastrointestinal hormone which activates autonomic nerves, resulting in body fat reduction and cognitive improvement; however, the MHBA recognition site on enteroendocrine cells has not been fully elucidated. In this study, we report that MHBA is recognized by specific human and mouse bitter taste receptors (human TAS2R1, 8, 10 and mouse Tas2r119, 130, 105) using a heterologous receptor expression system in human embryonic kidney 293T cells. In addition, knockdown of each of these receptors using siRNA transfection partially but significantly suppressed an MHBA-induced calcium response and CCK production in enteroendocrine cells. Furthermore, blocking one of the essential taste signaling components, transient receptor potential cation channel subfamily M member 5, remarkably inhibited the MHBA-induced calcium response and CCK production in enteroendocrine cells. Our results demonstrate that specific bitter taste receptor activation by MHBA drives downstream calcium response and CCK production in enteroendocrine cells. These findings reveal a mechanism by which food ingredients derived from hops in beer activate the gut-brain axis for the first time.
Collapse
|
16
|
Ano Y, Ohya R, Yamazaki T, Takahashi C, Taniguchi Y, Kondo K, Takashima A, Uchida K, Nakayama H. Hop bitter acids containing a β-carbonyl moiety prevent inflammation-induced cognitive decline via the vagus nerve and noradrenergic system. Sci Rep 2020; 10:20028. [PMID: 33208787 PMCID: PMC7674441 DOI: 10.1038/s41598-020-77034-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
The prevention of age-related cognitive decline and dementia is becoming a high priority because of the rapid growth of aging populations. We have previously shown that hop bitter acids such as iso-α-acids (IAAs) and matured hop bitter acids (MHBAs) activate the vagus nerve and improve memory impairment. Moreover, supplements with MHBAs were shown to improve memory retrieval in older adults. However, the underlying mechanisms have not been entirely elucidated. We aimed to investigate the effects of MHBAs and the common β-tricarbonyl moiety on memory impairment induced by the activation of microglia and the loss of the noradrenergic system. MHBAs and a model compound with β-tricarbonyl moiety were administered to LPS-inoculated mice and 5 × FAD Alzheimer’s disease (AD) model mice, following the evaluation in behavioral tests and microglial activation. To evaluate the association of noradrenaline with MHBAs effects, mice treated with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), a noradrenergic neurotoxin that selectively damages noradrenergic projections from the locus coeruleus, were subjected to the behavioral evaluation. MHBAs reduced brain inflammation and improved LPS-induced memory impairment. A model compound possessing the β-tricarbonyl moiety improved the LPS-induced memory impairment and neuronal loss via the vagus nerve. Additionally, the protective effects of MHBAs on memory impairment were attenuated by noradrenaline depletion using DSP-4. MHBAs suppressed the activation of microglia and improved the memory impairment in 5 × FAD mice, which was also attenuated by noradrenaline depletion. Treatment with MHBAs increased cholecystokinin production from the intestinal cells. Generally, cholecystokinin activates the vagal nerve, which stimulate the noradrenergic neuron in the locus ceruleus. Taken together, our results reveal that food ingredients such as hop bitter acids with a β-tricarbonyl moiety suppress microglial activation and improve memory impairment induced by inflammation or AD pathology via the activation of the gut-brain axis and noradrenergic system. Supplements with hop bitter acids, including MHBAs, might be a novel approach for the prevention of cognitive decline and dementia.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan. .,Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan.
| | - Rena Ohya
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan.,Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Takahiro Yamazaki
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Chika Takahashi
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Yoshimasa Taniguchi
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Keiji Kondo
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | | | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
17
|
Ayabe T, Fukuda T, Ano Y. Improving Effects of Hop-Derived Bitter Acids in Beer on Cognitive Functions: A New Strategy for Vagus Nerve Stimulation. Biomolecules 2020; 10:E131. [PMID: 31940997 PMCID: PMC7022854 DOI: 10.3390/biom10010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Dementia and cognitive decline are global public health problems. Moderate consumption of alcoholic beverages reduces the risk of dementia and cognitive decline. For instance, resveratrol, a polyphenolic compound found in red wine, has been well studied and reported to prevent dementia and cognitive decline. However, the effects of specific beer constituents on cognitive function have not been investigated in as much detail. In the present review, we discuss the latest reports on the effects and underlying mechanisms of hop-derived bitter acids found in beer. Iso-α-acids (IAAs), the main bitter components of beer, enhance hippocampus-dependent memory and prefrontal cortex-associated cognitive function via dopamine neurotransmission activation. Matured hop bitter acids (MHBAs), oxidized components with β-carbonyl moieties derived from aged hops, also enhance memory functions via norepinephrine neurotransmission-mediated mechanisms. Furthermore, the effects of both IAAs and MHBAs are attenuated by vagotomy, suggesting that these bitter acids enhance cognitive function via vagus nerve stimulation. Moreover, supplementation with IAAs attenuates neuroinflammation and cognitive impairments in various rodent models of neurodegeneration including Alzheimer's disease. Daily supplementation with hop-derived bitter acids (e.g., 35 mg/day of MHBAs) may be a safe and effective strategy to stimulate the vagus nerve and thus enhance cognitive function.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan; (T.F.); (Y.A.)
| | | | | |
Collapse
|