1
|
Yang YX, Zhu BT. Further exploration of the quantitative distance-energy and contact number-energy relationships for predicting the binding affinity of protein-ligand complexes. Biophys J 2025; 124:1166-1177. [PMID: 40017034 PMCID: PMC11993928 DOI: 10.1016/j.bpj.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
Accurate estimation of the strength of the protein-ligand interaction is important in the field of drug discovery. The binding strength can be determined by using experimental binding affinity assays which are both time and labor consuming and costly. Predicting the binding affinity/energy in silico is an alternative approach, particularly for virtual screening of large data sets. In general, the distance-based terms such as electrostatic and van der Waals interactions are among the key determinants of binding energy. In this work, the distance-binding energy relationships, i.e., E ∝ -d-k, are further explored, extended, and developed for protein-ligand binding affinity prediction. The contributions of different atom-type pairs were considered synthetically and jointly. Additionally, the contact number-energy relationships (E ∝ -nk) were also explored for protein-ligand binding affinity prediction. Significantly, the power exponents of the distances or contact numbers in the energy functions are not restricted by the existing theories concerning van der Waals and electrostatic energies (expressed as ar6-br12 and cr). The performances of the new distance-based or contact number-based models are better than the performances of those sophisticated non-machine-learning-based scoring functions developed before. The exploration and extension of the distance-energy and contact number-energy relationships may offer insights into the development of more effective methods for predicting the protein-ligand binding affinity accurately and analyzing the protein-ligand interactions rationally.
Collapse
Affiliation(s)
- Yong Xiao Yang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China; Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Wu J, Lv J, Zhao L, Zhao R, Gao T, Xu Q, Liu D, Yu Q, Ma F. Exploring the role of microbial proteins in controlling environmental pollutants based on molecular simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167028. [PMID: 37704131 DOI: 10.1016/j.scitotenv.2023.167028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Molecular simulation has been widely used to study microbial proteins' structural composition and dynamic properties, such as volatility, flexibility, and stability at the microscopic scale. Herein, this review describes the key elements of molecular docking and molecular dynamics (MD) simulations in molecular simulation; reviews the techniques combined with molecular simulation, such as crystallography, spectroscopy, molecular biology, and machine learning, to validate simulation results and bridge information gaps in the structure, microenvironmental changes, expression mechanisms, and intensity quantification; illustrates the application of molecular simulation, in characterizing the molecular mechanisms of interaction of microbial proteins with four different types of contaminants, namely heavy metals (HMs), pesticides, dyes and emerging contaminants (ECs). Finally, the review outlines the important role of molecular simulations in the study of microbial proteins for controlling environmental contamination and provides ideas for the application of molecular simulation in screening microbial proteins and incorporating targeted mutagenesis to obtain more effective contaminant control proteins.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ruofan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tian Gao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, China
| | - Qi Xu
- PetroChina Fushun Petrochemical Company, Fushun 113000, China
| | - Dongbo Liu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Qiqi Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Yu L, He X, Fang X, Liu L, Liu J. Deep Learning with Geometry-Enhanced Molecular Representation for Augmentation of Large-Scale Docking-Based Virtual Screening. J Chem Inf Model 2023; 63:6501-6514. [PMID: 37882338 DOI: 10.1021/acs.jcim.3c01371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Structure-based virtual screening has been a crucial tool in drug discovery for decades. However, as the chemical space expands, the existing structure-based virtual screening techniques based on molecular docking and scoring struggle to handle billion-entry ultralarge libraries due to the high computational cost. To address this challenge, people have resorted to machine learning techniques to enhance structure-based virtual screening for efficiently exploring the vast chemical space. In those cases, compounds are usually treated as sequential strings or two-dimensional topology graphs, limiting their ability to incorporate three-dimensional structural information for downstream tasks. We herein propose a novel deep learning protocol, GEM-Screen, which utilizes the geometry-enhanced molecular representation of the compounds docking to a specific target and is trained on docking scores of a small fraction of a library through an active learning strategy to approximate the docking outcome for yet nontraining entries. This protocol is applied to virtual screening campaigns against the AmpC and D4 targets, demonstrating that GEM-Screen enriches more than 90% of the hit scaffolds for AmpC in the top 4% of model predictions and more than 80% of the hit scaffolds for D4 in the same top-ranking size of library. GEM-Screen can be used in conjunction with traditional docking programs for docking of only the top-ranked compounds to avoid the exhaustive docking of the whole library, thus allowing for discovering top-scoring compounds from billion-entry libraries in a rapid yet accurate fashion.
Collapse
Affiliation(s)
- Lan Yu
- School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Xiaomin Fang
- Baidu International Technology (Shenzhen) Co., Ltd., Shenzhen 518063, China
| | - Lihang Liu
- Baidu International Technology (Shenzhen) Co., Ltd., Shenzhen 518063, China
| | - Jinfeng Liu
- School of Science, China Pharmaceutical University, Nanjing 210009, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Zhao X, Li H, Zhang K, Huang SY. Iterative Knowledge-Based Scoring Function for Protein-Ligand Interactions by Considering Binding Affinity Information. J Phys Chem B 2023; 127:9021-9034. [PMID: 37822259 DOI: 10.1021/acs.jpcb.3c04421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Scoring functions for protein-ligand interactions play a critical role in structure-based drug design. Owing to the good balance between general applicability and computational efficiency, knowledge-based scoring functions have obtained significant advancements and achieved many successes. Nevertheless, knowledge-based scoring functions face a challenge in utilizing the experimental affinity data and thus may not perform well in binding affinity prediction. Addressing the challenge, we have proposed an improved version of the iterative knowledge-based scoring function ITScore by considering binding affinity information, which is referred to as ITScoreAff, based on a large training set of 6216 protein-ligand complexes with both structures and affinity data. ITScoreAff was extensively evaluated and compared with ITScore, 33 traditional, and 6 machine learning scoring functions in terms of docking power, ranking power, and screening power on the independent CASF-2016 benchmark. It was shown that ITScoreAff obtained an overall better performance than the other 40 scoring functions and gave an average success rate of 85.3% in docking power, a correlation coefficient of 0.723 in scoring power, and an average rank correlation coefficient of 0.668 in ranking power. In addition, ITScoreAff also achieved the overall best screening power when the top 10% of the ranked database were considered. These results demonstrated the robustness of ITScoreAff and its improvement over existing scoring functions.
Collapse
Affiliation(s)
- Xuejun Zhao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Hao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Keqiong Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
5
|
Liu J, Wan J, Ren Y, Shao X, Xu X, Rao L. DOX_BDW: Incorporating Solvation and Desolvation Effects of Cavity Water into Nonfitting Protein-Ligand Binding Affinity Prediction. J Chem Inf Model 2023; 63:4850-4863. [PMID: 37539963 DOI: 10.1021/acs.jcim.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Accurate prediction of the protein-ligand binding affinity (PLBA) with an affordable cost is one of the ultimate goals in the field of structure-based drug design (SBDD), as well as a great challenge in the computational and theoretical chemistry. Herein, we have systematically addressed the complicated solvation and desolvation effects on the PLBA brought by the difference of the explicit water in the protein cavity before and after ligands bind to the protein-binding site. Based on the new solvation model, a nonfitting method at the first-principles level for the PLBA prediction was developed by taking the bridging and displaced water (BDW) molecules into account simultaneously. The newly developed method, DOX_BDW, was validated against a total of 765 noncovalent and covalent protein-ligand binding pairs, including the CASF2016 core set, Cov_2022 covalent binding testing set, and six testing sets for the hit and lead compound optimization (HLO) simulation. In all of the testing sets, the DOX_BDW method was able to produce PLBA predictions that were strongly correlated with the corresponding experimental data (R = 0.66-0.85). The overall performance of DOX_BDW is better than the current empirical scoring functions that are heavily parameterized. DOX_BDW is particularly outstanding for the covalent binding situation, implying the need for considering an electronic structure in covalent drug design. Furthermore, the method is especially recommended to be used in the HLO scenario of SBDD, where hundreds of similar derivatives need to be screened and refined. The computational cost of DOX_BDW is affordable, and its accuracy is remarkable.
Collapse
Affiliation(s)
- Jiaqi Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 43009, People's Republic of China
| | - Jian Wan
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 43009, People's Republic of China
| | - Yanliang Ren
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 43009, People's Republic of China
| | - Xubo Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 43009, People's Republic of China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education (MOE) Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Li Rao
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 43009, People's Republic of China
| |
Collapse
|
6
|
Zhao G, Liu X, Wang S, Bai Z, Zhang S, Wang Y, Yu H, Xu X. Hydrogen bonding penalty used for virtual screening to discover potent inhibitors for Papain-Like cysteine proteases of SARS-CoV-2. Chem Biol Drug Des 2022; 100:502-514. [PMID: 35792890 PMCID: PMC9349924 DOI: 10.1111/cbdd.14115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/26/2022]
Abstract
The Papain-Like proteases (PLpro) of SARS-CoV-2 play a crucial role in viral replication and the formation of nonstructural proteins. To find available inhibitors, the 3D structure of PLpro of SARS2 was obtained by homologous modelling, and we used this structure as a target to search for inhibitors through molecular docking and MM/GBSA binding free energy rescoring. A novel hydrogen bonding penalty was applied to the screening process, which meanwhile took desolvation into account. Finally, 61 compounds were acquired and 4 of them with IC50 at micromolar level tested in vitro enzyme activity assay, which includes clinical drugs tegaserod. Considering the importance of crystal water molecules, the 4 compounds were re-docked and considered bound waters in the active site as a part of PLpro. The binding modes of these 4 compounds were further explored with metadynamics simulations. The hits will provide a starting point for future key interactions identified and lead optimization targetting PLpro.
Collapse
Affiliation(s)
- Guangjian Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
| | - Xiaochun Liu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
| | - Suyun Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐ScienceWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Zhongyue Bai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
| | - Siyu Zhang
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
- School of Life ScienceLanzhou UniversityLanzhouChina
| | - Yifan Wang
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Haibo Yu
- School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
| |
Collapse
|
7
|
Dong L, Qu X, Wang B. XLPFE: A Simple and Effective Machine Learning Scoring Function for Protein-Ligand Scoring and Ranking. ACS OMEGA 2022; 7:21727-21735. [PMID: 35785279 PMCID: PMC9245135 DOI: 10.1021/acsomega.2c01723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Prediction of protein-ligand binding affinities is a central issue in structure-based computer-aided drug design. In recent years, much effort has been devoted to the prediction of the binding affinity in protein-ligand complexes using machine learning (ML). Due to the remarkable ability of ML methods in nonlinear fitting, ML-based scoring functions (SFs) can deliver much improved performance on a selected test set, such as the comparative assessment of scoring functions (CASF), when compared to the classical SFs. However, the performance of ML-based SFs heavily relies on the overall similarity of the training set and the test set. To improve the performance and transferability of an SF, we have tried to combine various features including energy terms from X-score and AutoDock Vina, the properties of ligands, and the statistical sequence-related information from either the binding site or the full protein. In conjunction with extreme trees (ET), an ML model, we have developed XLPFE, a new SF. Compared with other tested methods such as X-score, AutoDock Vina, ΔvinaXGB, PSH-ML, or CNN-score, XLPFE achieves consistently better scoring and ranking power for various types of protein-ligand complex structures beyond the CASF, suggesting that XLPFE has superior transferability. In particular, XLPFE performs better with metalloenzymes. With its faster speed, improved accuracy, and better transferability, XLPFE could be usefully applied to a diverse range of protein-ligand complexes.
Collapse
Affiliation(s)
- Lina Dong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Xiaoyang Qu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| |
Collapse
|
8
|
Pan X, Wang H, Zhang Y, Wang X, Li C, Ji C, Zhang JZH. AA-Score: a New Scoring Function Based on Amino Acid-Specific Interaction for Molecular Docking. J Chem Inf Model 2022; 62:2499-2509. [PMID: 35452230 DOI: 10.1021/acs.jcim.1c01537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The protein-ligand scoring function plays an important role in computer-aided drug discovery and is heavily used in virtual screening and lead optimization. In this study, we developed a new empirical protein-ligand scoring function with amino acid-specific interaction components for hydrogen bond, van der Waals, and electrostatic interactions. In addition, hydrophobic, π-stacking, π-cation, and metal-ligand interactions are also included in the new scoring function. To better evaluate the performance of the AA-Score, we generated several new test sets for evaluation of scoring, ranking, and docking performances, respectively. Extensive tests show that AA-Score performs well on scoring, docking, and ranking as compared to other widely used traditional scoring functions. The performance improvement of AA-Score benefits from the decomposition of individual interaction into amino acid-specific types. To facilitate applications, we developed an easy-to-use tool to analyze protein-ligand interaction fingerprint and predict binding affinity using the AA-Score. The source code and associated running examples can be found at https://github.com/xundrug/AA-Score-Tool.
Collapse
Affiliation(s)
- Xiaolin Pan
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Hao Wang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Yueqing Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Xingyu Wang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Cuiyu Li
- Advanced Computing East China Sub-center, Suma Technology Co., Ltd., Kunshan 215300, China
| | - Changge Ji
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Department of Chemistry, New York University, New York 10003, United States.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan Shanxi 030006, China
| |
Collapse
|
9
|
Qu X, Dong L, Si Y, Zhao Y, Wang Q, Su P, Wang B. Reliable Prediction of the Protein-Ligand Binding Affinity Using a Charge Penetration Corrected AMOEBA Force Field: A Case Study of Drug Resistance Mutations in Abl Kinase. J Chem Theory Comput 2022; 18:1692-1700. [PMID: 35107298 DOI: 10.1021/acs.jctc.1c01005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein mutations that directly impair drug binding are related to therapeutic resistance, and accurate prediction of their impact on drug binding would benefit drug design and clinical practice. Here, we have developed a scoring strategy that predicts the effect of the mutations on the protein-ligand binding affinity. In view of the critical importance of electrostatics in protein-ligand interactions, the charge penetration corrected AMOEBA force field (AMOEBA_CP model) was employed to improve the accuracy of the calculated electrostatic energy. We calculated the electrostatic energy using an energy decomposition analysis scheme based on the generalized Kohn-Sham (GKS-EDA). The AMOEBA_CP model was validated by a protein-fragment-ligand complex data set (Abl236) constructed from the co-crystal structures of the cancer target Abl kinase with six inhibitors. To predict ligand binding affinity changes upon protein mutation of Abl kinase, we used sampling protocol with multistep simulated annealing to search conformations of mutant proteins. The scoring strategy based on AMOEBA_CP model has achieved considerable performance in predicting resistance for 8 kinase inhibitors across 144 clinically identified point mutations. Overall, this study illustrates that the AMOEBA_CP model, which accurately treats electrostatics through penetration correction, enables the accurate prediction of the mutation-induced variation of protein-ligand binding affinity.
Collapse
Affiliation(s)
- Xiaoyang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lina Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Peifeng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
10
|
Dong L, Qu X, Zhao Y, Wang B. Prediction of Binding Free Energy of Protein-Ligand Complexes with a Hybrid Molecular Mechanics/Generalized Born Surface Area and Machine Learning Method. ACS OMEGA 2021; 6:32938-32947. [PMID: 34901645 PMCID: PMC8655939 DOI: 10.1021/acsomega.1c04996] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Accurate prediction of protein-ligand binding free energies is important in enzyme engineering and drug discovery. The molecular mechanics/generalized Born surface area (MM/GBSA) approach is widely used to estimate ligand-binding affinities, but its performance heavily relies on the accuracy of its energy components. A hybrid strategy combining MM/GBSA and machine learning (ML) has been developed to predict the binding free energies of protein-ligand systems. Based on the MM/GBSA energy terms and several features associated with protein-ligand interactions, our ML-based scoring function, GXLE, shows much better performance than MM/GBSA without entropy. In particular, the good transferability of the GXLE model is highlighted by its good performance in ranking power for prediction of the binding affinity of different ligands for either the docked structures or crystal structures. The GXLE scoring function and its code are freely available and can be used to correct the binding free energies computed by MM/GBSA.
Collapse
Affiliation(s)
- Lina Dong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Xiaoyang Qu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Yuan Zhao
- The
Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R.
China
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| |
Collapse
|
11
|
Bao J, He X, Zhang JZH. DeepBSP-a Machine Learning Method for Accurate Prediction of Protein-Ligand Docking Structures. J Chem Inf Model 2021; 61:2231-2240. [PMID: 33979150 DOI: 10.1021/acs.jcim.1c00334] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, machine-learning-based scoring functions have significantly improved the scoring power. However, many of these methods do not perform well in distinguishing the native structure from docked decoy poses due to the lack of decoy structural information in their training data. Here, we developed a machine-learning model, named DeepBSP, that can directly predict the root mean square deviation (rmsd) of a ligand docking pose with reference to its native binding pose. Unlike the binding affinity, the rmsd between the docking poses with reference to their native structures can be straightforwardly determined. By training on a generated data set with 11,925 native complexes and more than 165,000 docked poses, our model shows excellent docking power on our test set and also on the CASF-2016 docking decoy set compared to other major scoring functions. Thus, by combining molecular dockings that generate many poses with the application of DeepBSP, one can more accurately predict the best binding pose that is closest to the native complex structure. This DeepBSP model shall be very useful in picking out poses close to their natives from many poses generated from a dock application.
Collapse
Affiliation(s)
- Jingxiao Bao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|