1
|
Valencia FJ, Aurora V, Ramírez M, Ruestes CJ, Prada A, Varas A, Rogan J. Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation. NANOMATERIALS 2022; 12:nano12122000. [PMID: 35745339 PMCID: PMC9231280 DOI: 10.3390/nano12122000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
In this contribution, we present a study of the mechanical properties of porous nanoshells measured with a nanoindentation technique. Porous nanoshells with hollow designs can present attractive mechanical properties, as observed in hollow nanoshells, but coupled with the unique mechanical behavior of porous materials. Porous nanoshells display mechanical properties that are dependent on shell porosity. Our results show that, under smaller porosity values, deformation is closely related to the one observed for polycrystalline and single-crystalline nanoshells involving dislocation activity. When porosity in the nanoparticle is increased, plastic deformation was mediated by grain boundary sliding instead of dislocation activity. Additionally, porosity suppresses dislocation activity and decreases nanoparticle strength, but allows for significant strain hardening under strains as high as 0.4. On the other hand, Young’s modulus decreases with the increase in nanoshell porosity, in agreement with the established theories of porous materials. However, we found no quantitative agreement between conventional models applied to obtain the Young’s modulus of porous materials.
Collapse
Affiliation(s)
- Felipe J. Valencia
- Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3480112, Chile;
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Correspondence:
| | - Viviana Aurora
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| | - Max Ramírez
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| | - Carlos J. Ruestes
- Instituto Interdisciplinario de Ciencias Básicas, CONICET-UNCuyo, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
| | - Alejandro Prada
- Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3480112, Chile;
| | - Alejandro Varas
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| | - José Rogan
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| |
Collapse
|
2
|
Yang Z, Wang D, Zhang C, Liu H, Hao M, Kan S, Liu D, Liu W. The Applications of Gold Nanoparticles in the Diagnosis and Treatment of Gastrointestinal Cancer. Front Oncol 2022; 11:819329. [PMID: 35127533 PMCID: PMC8807688 DOI: 10.3389/fonc.2021.819329] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, the morbidity and mortality of gastrointestinal cancer have remained high in China. Due to the deep location of the gastrointestinal organs, such as gastric cancer, the early symptoms of cancer are not obvious. It is generally discovered at an advanced stage with distant metastasis and lymph node infiltration, making it difficult to cure. Therefore, there is a significant need for novel technologies that can effectively diagnose and treat gastrointestinal cancer, ultimately reducing its mortality. Gold nanoparticles (GNPs), a type of nanocarrier with unique optical properties and remarkable biocompatibility, have the potential to influence the fate of cancer by delivering drugs, nucleic acids to cancer cells and tissues. As a safe and reliable visualization agent, GNPs can track drugs and accurately indicate the location and boundaries of cancer, opening up new possibilities for cancer treatment. In addition, GNPs have been used in photodynamic therapy to deliver photosensitizers, as well as in combination with photothermal therapy. Therefore, GNPs can be used as a safe and effective nanomaterial in the treatment and diagnosis of gastrointestinal cancer.
Collapse
Affiliation(s)
- Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chenyu Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
3
|
Valencia FJ, Ramírez M, Varas A, Rogan J. Thermal Sensitivity on Eccentric Gold Hollow Nanoparticles: A Perspective from Atomistic Simulations. J Chem Inf Model 2021; 61:5499-5507. [PMID: 34726404 DOI: 10.1021/acs.jcim.1c00849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eccentricity is a common feature consequence of several synthesis protocols of hollow nanoshells. Despite the crescent interest in these nanoparticles, it is still unclear how an irregular layer on the nanoparticle impacts the macroscopic properties. Here, we study the thermal stability of eccentric hollow nanoparticles (hNPs) for different sizes and eccentricity values by means of classical molecular dynamics simulations. Our results reveal that eccentricity displays a significant role in the thermal stability of hNPs. We attribute this behavior to the irregular shell contour, which collapses due to the thermal-activated diffusive process from the nanoparticle shell's most thin region. The mechanism is driven at low temperature by the nucleation of stacking faults until the amorphization for larger temperature values. Besides, for some particular eccentric hNPs, the shell suffers a surface reconstruction process, transforming the eccentric hNP into a concentric hNP. We believe that our study on thermal effects in eccentric hNPs has relevance because of their outstanding applications for plasmonic and sensing.
Collapse
Affiliation(s)
- Felipe J Valencia
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago 7510041, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile
| | - Max Ramírez
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnologí a, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile
| | - Alejandro Varas
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnologí a, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile
| | - José Rogan
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnologí a, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile
| |
Collapse
|
4
|
Valencia FJ, Amigo N, Bringa EM. Tension-compression behavior in gold nanoparticle arrays: a molecular dynamics study. NANOTECHNOLOGY 2021; 32:145715. [PMID: 33352539 DOI: 10.1088/1361-6528/abd5e8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mechanical properties of Au nanoparticle arrays are studied by tensile and compressive deformation, using large-scale molecular dynamics simulations which include up to 16 million atoms. Our results show that mechanical response is dominated by nanoparticle size. For compression, strength versus particle size shows similar trends in strength than full-density nanocrystals. For diameters (d) below 10 nm there is an inverse Hall-Petch (HP) regime. Beyond a maximum at 10 nm, strength decreases following a HP d -1/2 dependence. In both regimes, interparticle sliding and dislocation activity play a role. The array with 10 nm nanoparticles showed the same mechanical properties than a polycrystalline bulk with the same grain size. This enhanced strength, for a material nearly 20% lighter, is attributed to the absence of grain boundary junctions, and to the array geometry, which leads to constant flow stress by means of densification, nanoparticle rotation, and dislocation activity. For tension, there is something akin to brittle fracture for large grain sizes, with NPs debonding perpendicular to the traction direction. The Johnson-Kendall-Roberts contact theory was successfully applied to describe the superlattice porosity, predicting also the array strength within 10% of molecular dynamics values. Although this study is focused on Au nanoparticles, our findings could be helpful in future studies of similar arrays with NPs of different kinds of materials.
Collapse
Affiliation(s)
- Felipe J Valencia
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
- CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago, Chile
| | - Nicolás Amigo
- Escuela de Data Science, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Eduardo M Bringa
- CONICET and Facultad de Ingeniería, Universidad de Mendoza, Mendoza, 5500, Argentina
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Chile
| |
Collapse
|