1
|
Doga H, Raubenolt B, Cumbo F, Joshi J, DiFilippo FP, Qin J, Blankenberg D, Shehab O. A Perspective on Protein Structure Prediction Using Quantum Computers. J Chem Theory Comput 2024; 20:3359-3378. [PMID: 38703105 PMCID: PMC11099973 DOI: 10.1021/acs.jctc.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Despite the recent advancements by deep learning methods such as AlphaFold2, in silico protein structure prediction remains a challenging problem in biomedical research. With the rapid evolution of quantum computing, it is natural to ask whether quantum computers can offer some meaningful benefits for approaching this problem. Yet, identifying specific problem instances amenable to quantum advantage and estimating the quantum resources required are equally challenging tasks. Here, we share our perspective on how to create a framework for systematically selecting protein structure prediction problems that are amenable for quantum advantage, and estimate quantum resources for such problems on a utility-scale quantum computer. As a proof-of-concept, we validate our problem selection framework by accurately predicting the structure of a catalytic loop of the Zika Virus NS3 Helicase, on quantum hardware.
Collapse
Affiliation(s)
- Hakan Doga
- IBM Quantum,
Almaden Research Center, San Jose, California 95120, United States
| | - Bryan Raubenolt
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Fabio Cumbo
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Jayadev Joshi
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Frank P. DiFilippo
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Jun Qin
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Daniel Blankenberg
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Omar Shehab
- IBM
Quantum, IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, United States
| |
Collapse
|
2
|
Jiang W. Studying the Collective Functional Response of a Receptor in Alchemical Ligand Binding Free Energy Simulations with Accelerated Solvation Layer Dynamics. J Chem Theory Comput 2024; 20:3085-3095. [PMID: 38568961 DOI: 10.1021/acs.jctc.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Ligand binding free energy simulations (LB-FES) that involve sampling of protein functional conformations have been longstanding challenges in research on molecular recognition. Particularly, modeling of the conformational transition pathway and design of the heuristic biasing mechanism are severe bottlenecks for the existing enhanced configurational sampling (ECS) methods. Inspired by the key role of hydration in regulating conformational dynamics of macromolecules, this report proposes a novel ECS approach that facilitates binding-associated structural dynamics by accelerated hydration transitions in combination with the λ-exchange of free energy perturbation (FEP). Two challenging protein-ligand binding processes involving large configurational transitions of the receptor are studied, with hydration transitions at binding sites accelerated by Hamiltonian-simulated annealing of the hydration layer. Without the need for pathway analysis or ad hoc barrier flattening potential, LB-FES were performed with FEP/λ-exchange molecular dynamics simulation at a minor overhead for annealing of the hydration layer. The LB-FES studies showed that the accelerated rehydration significantly enhances the collective conformational transitions of the receptor, and convergence of binding affinity calculations is obtained at a sweet-spot simulation time scale. Alchemical LB-FES with the proposed ECS strategy is free from the effort of trial and error for the setup and realizes efficient on-the-fly sampling for the collective functional response of the receptor and bound water and therefore presents a practical approach to high-throughput screening in drug discovery.
Collapse
Affiliation(s)
- Wei Jiang
- Computational Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439, United States
| |
Collapse
|
3
|
Summa CM, Langford DP, Dinshaw SH, Webb J, Rick SW. Calculations of Absolute Free Energies, Enthalpies, and Entropies for Drug Binding. J Chem Theory Comput 2024; 20:2812-2819. [PMID: 38538531 DOI: 10.1021/acs.jctc.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Computer simulation methods can aid in the rational design of drugs aimed at a specific target, typically a protein. The affinity of a drug for its target is given by the free energy of binding. Binding can be further characterized by the enthalpy and entropy changes in the process. Methods exist to determine exact free energies, enthalpies, and entropies that are dependent only on the quality of the potential model and adequate sampling of conformational degrees of freedom. Entropy and enthalpy are roughly an order of magnitude more difficult to calculate than the free energy. This project combines a replica exchange method for enhanced sampling, designed to be efficient for protein-sized systems, with free energy calculations. This approach, replica exchange with dynamical scaling (REDS), uses two conventional simulations at different temperatures so that the entropy can be found from the temperature dependence of the free energy. A third replica is placed between them, with a modified Hamiltonian that allows it to span the temperature range of the conventional replicas. REDS provides temperature-dependent data and aids in sampling. It is applied to the bromodomain-containing protein 4 (BRD4) system. We find that for the force fields used, the free energies are accurate but the entropies and enthalpies are not, with the entropic contribution being too positive. Reproducing the entropy and enthalpy of binding appears to be a more stringent test of the force fields than reproducing the free energy.
Collapse
Affiliation(s)
- Christopher M Summa
- Department of Computer Science, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Dillon P Langford
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Sam H Dinshaw
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Jennifer Webb
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Steven W Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| |
Collapse
|
4
|
Abstract
Polypeptoids are N-substituted glycine polymers, which differ from peptides in the placement of the side chain on the amide nitrogen rather than the Cα carbon. A peptoid with a chiral side chain containing both an aromatic group and carboxylic acid has a structure that responds to pH changes. All-atom molecular dynamics simulations using a force field specifically tuned for peptoids were carried out with an advanced sampling method for the peptoid (S)-N-(1-carboxy-2-phenylethyl)glycine in the high and low pH limits. The simulations show that the structure changes from mostly cis amide bonds at low pH to mostly trans bonds at high pH. The structural changes are driven by side chain-backbone hydrogen bonds at low pH and side chain repulsions and increased water contact at high pH.
Collapse
Affiliation(s)
- In Chul Hwang
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Steven W Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| |
Collapse
|
5
|
Raubenolt BA, Rick SW. Simulation studies of polypeptoids using replica exchange with dynamical scaling and dihedral biasing. J Comput Chem 2022; 43:1229-1236. [PMID: 35543334 DOI: 10.1002/jcc.26887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
Polypeptoids differ from polypeptides in that the amide bond can more frequently adopt both cis and trans conformations. The transition between the two conformations requires overcoming a large energy barrier, making it difficult for conventional molecular simulations to adequately visit the cis and trans structures. A replica-exchange method is presented that allows for easy rotations of the amide bond and also an efficient linking to a high temperature replica. The method allows for just three replicas (one at the temperature and Hamiltonian of interest, a second high temperature replica with a biased dihedral potential, and a third connecting them) to overcome the amide bond sampling problem and also enhance sampling for other coordinates. The results indicate that for short peptoid oligomers, the conformations can range from all cis to all trans with an average cis/trans ratio that depends on side chain and potential model.
Collapse
Affiliation(s)
- Bryan A Raubenolt
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| | - Steven W Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Raubenolt BA, Islam NN, Summa CM, Rick SW. Molecular dynamics simulations of the flexibility and inhibition of SARS-CoV-2 NSP 13 helicase. J Mol Graph Model 2022; 112:108122. [PMID: 35021142 PMCID: PMC8730789 DOI: 10.1016/j.jmgm.2022.108122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
The helicase protein of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is both a good potential drug target and very flexible. The flexibility, and therefore its function, could be reduced through knowledge of these motions and identification of allosteric pockets. Using molecular dynamics simulations with enhanced sampling, we determined key modes of motion and sites on the protein that are at the interface between flexible domains of the proteins. We developed an approach to map the principal components of motion onto the surface of a potential binding pocket to help in the identification of allosteric sites.
Collapse
Affiliation(s)
- Bryan A Raubenolt
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA
| | - Naeyma N Islam
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA
| | - Christoper M Summa
- Department of Computer Science, University of New Orleans, New Orleans, LA, 70148, USA
| | - Steven W Rick
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.
| |
Collapse
|
7
|
Kapakayala AB, Nair NN. Boosting the conformational sampling by combining replica exchange with solute tempering and well-sliced metadynamics. J Comput Chem 2021; 42:2233-2240. [PMID: 34585768 DOI: 10.1002/jcc.26752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/22/2023]
Abstract
Methods that combine collective variable (CV) based enhanced sampling and global tempering approaches are used in speeding-up the conformational sampling and free energy calculation of large and soft systems with a plethora of energy minima. In this paper, a new method of this kind is proposed in which the well-sliced metadynamics approach (WSMTD) is united with replica exchange with solute tempering (REST2) method. WSMTD employs a divide-and-conquer strategy wherein high-dimensional slices of a free energy surface are independently sampled and combined. The method enables one to accomplish a controlled exploration of the CV-space with a restraining bias as in umbrella sampling, and enhance-sampling of one or more orthogonal CVs using a metadynamics like bias. The new hybrid method proposed here enables boosting the sampling of more slow degrees of freedom in WSMTD simulations, without the need to specify associated CVs, through a replica exchange scheme within the framework of REST2. The high-dimensional slices of the probability distributions of CVs computed from the united WSMTD and REST2 simulations are subsequently combined using the weighted histogram analysis method to obtain the free energy surface. We show that the new method proposed here is accurate, improves the conformational sampling, and achieves quick convergence in free energy estimates. We demonstrate this by computing the conformational free energy landscapes of solvated alanine tripeptide and Trp-cage mini protein in explicit water.
Collapse
Affiliation(s)
- Anji Babu Kapakayala
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
8
|
Rick SW. Insights into the Thermal Response of a Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) Triblock Polymer in Water. J Phys Chem B 2021; 125:2167-2173. [PMID: 33606935 DOI: 10.1021/acs.jpcb.0c11279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A thermal responsive block copolymer made up of ethylene oxide (EO) and propylene oxide (PO) blocks was simulated with optimized atomistic potentials and enhanced sampling methods over a range of temperatures. The results for the L42 pluronic polymer (EO)4(PO)22(EO)4, which is known to undergo a transition in this temperature range, and the similarly sized (EO)30 polymer, which does not, are compared. The thermal responsive L42 polymers in a dilute solution tend to aggregate, and this tendency gets stronger as temperature increases. The poly(ethylene oxide) polymer shows no such tendency. The aggregation is stabilized by the hydrophobic contact of the propylene oxide methyl groups, which outweighs a small loss in hydrogen bonds between the ether oxygens and water.
Collapse
Affiliation(s)
- Steven W Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| |
Collapse
|