1
|
Diomede L, Conz A, Mosconi M, Stoilova T, Paloni M, Salvalaglio M, Cagnotto A, Colombo L, Catania M, Di Fede G, Tagliavini F, Salmona M. The AβA2V paradigm: From molecular insights to therapeutic strategies in Alzheimer's disease and primary tauopathies. Pharmacol Res 2025; 211:107563. [PMID: 39733844 DOI: 10.1016/j.phrs.2024.107563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Alzheimer's disease, the leading cause of dementia globally, represents an unresolved clinical challenge due to its complex pathogenesis and the absence of effective treatments. Considering the multifactorial etiology of the disease, mainly characterized by the accumulation of amyloid β plaques and neurofibrillary tangles of tau protein, we discuss the A673V mutation in the gene coding for the amyloid precursor protein, which is associated with the familial form of Alzheimer's disease in a homozygous state. The mutation offers new insights into the molecular mechanisms of the disease, particularly regarding the contrasting roles of the A2V and A2T mutations in amyloid β peptide aggregation and toxicity. This review aims to describe relevant studies on A2V-mutated variants of the amyloid β peptide, revealing a protective effect against amyloid-β and tau pathology. Notably, special attention is given to the development of the peptide Aβ1-6A2V(D), which shows significant neuroprotective activity through inhibition of the assembly of amyloid β into amyloid fibrils. The therapeutic potential of this peptide emerges from its ability to reduce amyloid β-induced toxicity, with promising results from studies in human neuroblastoma cells and transgenic animal models.
Collapse
Affiliation(s)
- Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| | - Andrea Conz
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Michele Mosconi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Tatiana Stoilova
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Matteo Paloni
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Marcella Catania
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Giuseppe Di Fede
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Fabrizio Tagliavini
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|
2
|
Dey P, Biswas P. Effect of caffeine on the aggregation of amyloid-β-A 3D RISM study. J Chem Phys 2024; 160:125101. [PMID: 38516974 DOI: 10.1063/5.0202636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
Alzheimer's disease is a detrimental neurological disorder caused by the formation of amyloid fibrils due to the aggregation of amyloid-β peptide. The primary therapeutic approaches for treating Alzheimer's disease are targeted to prevent this amyloid fibril formation using potential inhibitor molecules. The discovery of such inhibitor molecules poses a formidable challenge to the design of anti-amyloid drugs. This study investigates the effect of caffeine on dimer formation of the full-length amyloid-β using a combined approach of all-atom, explicit water molecular dynamics simulations and the three-dimensional reference interaction site model theory. The change in the hydration free energy of amyloid-β dimer, with and without the inhibitor molecules, is calculated with respect to the monomeric amyloid-β, where the hydration free energy is decomposed into energetic and entropic components, respectively. Dimerization is accompanied by a positive change in the partial molar volume. Dimer formation is spontaneous, which implies a decrease in the hydration free energy. However, a reverse trend is observed for the dimer with inhibitor molecules. It is observed that the negatively charged residues primarily contribute for the formation of the amyloid-β dimer. A residue-wise decomposition reveals that hydration/dehydration of the side-chain atoms of the charged amino acid residues primarily contribute to dimerization.
Collapse
Affiliation(s)
- Priya Dey
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
3
|
Dey P, Biswas P. Aggregation propensities of proteins with varying degrees of disorder. J Comput Chem 2023; 44:874-886. [PMID: 36468418 DOI: 10.1002/jcc.27049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/10/2022]
Abstract
The hydration thermodynamics of a globular protein (AcP), three intrinsically disordered protein regions (1CD3, 1MVF, 1F0R) and a fully disordered protein (α-synuclein) is studied by an approach that combines an all-atom explicit water molecular dynamics simulations and three-dimensional reference interaction site model (3D-RISM) theory. The variation in hydration free energy with percentage disorder of the selected proteins is investigated through its nonelectrostatic and electrostatic components. A decrease in hydration free energy is observed with an increase in percentage disorder, indicating favorable interactions of the disordered proteins with the solvent. This confirms the role of percentage disorder in determining the aggregation propensity of proteins which is measured in terms of the hydration free energy in addition to their respective mean net charge and mean hydrophobicity. The hydration free energy is decoupled into energetic and entropic terms. A residue-wise decomposition analysis of the hydration free energy for the selected proteins is evaluated. The decomposition shows that the disordered regions contribute more than the ordered ones for the intrinsically disordered protein regions. The dominant role of electrostatic interactions is confirmed from the residue-wise decomposition of the hydration free energy. The results depict that the negatively charged residues contribute more to the total hydration free energy for the proteins with negative mean net charge, while the positively charged residues contribute more for proteins with positive mean net charge.
Collapse
Affiliation(s)
- Priya Dey
- Department of Chemistry, University of Delhi, Delhi, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Lu Y, Salsbury F, Derreumaux P. Impact of A2T and D23N mutations on C99 homodimer conformations. J Chem Phys 2022; 157:085102. [DOI: 10.1063/5.0101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The proteolytic cleavage of C99 by γ-secretase is the last step in the production of amyloid-β (Aβ) peptides. Previous studies have shown that membrane lipid composition, cholesterol concentration, and mutation in the transmembrane helix modified the structures and fluctuations of C99. In this study, we performed atomistic molecular dynamics simulations of the homodimer of the 55-residue congener of the C-terminal domain of the amyloid protein precursor, C99(1-55), in a POPC-cholesterol lipid bilayer, and we compared the conformational ensemble of WT sequence to those of the A2T and D23N variants. These mutations are particularly interesting as the protective Alzheimer's disease (AD) A2T mutation is known to decrease Aβ production, whereas the early onset AD D23N mutation does not affect Aβ production. We found noticeable differences in the structural ensembles of the three sequences. In particular, A2T varies from both WT and D23N by having long-range effects on the population of the extracellular justamembrane helix, the interface between the G29xxx-G33xxx-G37 motifs and the fluctuations of the transmembrane helical topologies.
Collapse
Affiliation(s)
- Yan Lu
- School of Physics, Xidian University, China
| | | | | |
Collapse
|
5
|
Puławski W, Dzwolak W. Virtual Quasi-2D Intermediates as Building Blocks for Plausible Structural Models of Amyloid Fibrils from Proteins with Complex Topologies: A Case Study of Insulin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7024-7034. [PMID: 35617668 PMCID: PMC9178918 DOI: 10.1021/acs.langmuir.2c00699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Conformational transitions of globular proteins into amyloid fibrils are complex multistage processes exceedingly challenging to simulate using molecular dynamics (MD). Slow monomer diffusion rates and rugged free energy landscapes disfavor swift self-assembly of orderly amyloid architectures within timescales accessible to all-atom MD. Here, we conduct a multiscale MD study of the amyloidogenic self-assembly of insulin: a small protein with a complex topology defined by two polypeptide chains interlinked by three disulfide bonds. To avoid kinetic traps, unconventional preplanarized insulin conformations are used as amyloid building blocks. These starting conformers generated through uniaxial compression of the native monomer in various spatial directions represent 6 distinct (out of 16 conceivable) two-dimensional (2D) topological classes varying in N-/C-terminal segments of insulin's A- and B-chains being placed inside or outside of the central loop constituted by the middle sections of both chains and Cys7A-Cys7B/Cys19B-Cys20A disulfide bonds. Simulations of the fibrillar self-assembly are initiated through a biased in-register alignment of two, three, or four layers of flat conformers belonging to a single topological class. The various starting topologies are conserved throughout the self-assembly process resulting in polymorphic amyloid fibrils varying in structural features such as helical twist, presence of cavities, and overall stability. Some of the protofilament structures obtained in this work are highly compatible with the earlier biophysical studies on insulin amyloid and high-resolution studies on insulin-derived amyloidogenic peptide models postulating the presence of steric zippers. Our approach provides in silico means to study amyloidogenic tendencies and viable amyloid architectures of larger disulfide-constrained proteins with complex topologies.
Collapse
Affiliation(s)
- Wojciech Puławski
- Institute
of High Pressure Physics, Polish Academy
of Sciences, 29/37 Sokołowska
Str., 01-142 Warsaw, Poland
| | - Wojciech Dzwolak
- Institute
of High Pressure Physics, Polish Academy
of Sciences, 29/37 Sokołowska
Str., 01-142 Warsaw, Poland
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
| |
Collapse
|
6
|
Durell SR, Kayed R, Guy HR. The amyloid concentric β‐barrel hypothesis: Models of amyloid beta 42 oligomers and annular protofibrils. Proteins 2022; 90:1190-1209. [DOI: 10.1002/prot.26301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Stewart R. Durell
- Laboratory of Cell Biology, National Cancer Institute National Institutes of Health Bethesda Maryland USA
| | - Rakez Kayed
- UTMB Mitchell Center for Neurodegenerative Diseases, Department of Neurology University of Texas Medical Branch Galveston Texas USA
| | - H. Robert Guy
- Amyloid Research Consultants (ARC) Cochiti Lake New Mexico USA
| |
Collapse
|
7
|
Nguyen TH, Nguyen PH, Ngo ST, Derreumaux P. Effect of Cholesterol Molecules on Aβ1-42 Wild-Type and Mutants Trimers. Molecules 2022; 27:molecules27041395. [PMID: 35209177 PMCID: PMC8879133 DOI: 10.3390/molecules27041395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease displays aggregates of the amyloid-beta (Aβ) peptide in the brain, and there is increasing evidence that cholesterol may contribute to the pathogenesis of the disease. Though many experimental and theoretical studies have focused on the interactions of Aβ oligomers with membrane models containing cholesterol, an understanding of the effect of free cholesterol on small Aβ42 oligomers is not fully established. To address this question, we report on replica exchange with a solute tempering simulation of an Aβ42 trimer with cholesterol and compare it with a previous replica exchange molecular dynamics simulation. We show that the binding hot spots of cholesterol are rather complex, involving hydrophobic residues L17–F20 and L30–M35 with a non-negligible contribution of loop residues D22–K28 and N-terminus residues. We also examine the effects of cholesterol on the trimers of the disease-causing A21G and disease-protective A2T mutations by molecular dynamics simulations. We show that these two mutations moderately impact cholesterol-binding modes. In our REST2 simulations, we find that cholesterol is rarely inserted into aggregates but rather attached as dimers and trimers at the surface of Aβ42 oligomers. We propose that cholesterol acts as a glue to speed up the formation of larger aggregates; this provides a mechanistic link between cholesterol and Alzheimer’s disease.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam; (T.H.N.); (S.T.N.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam; (T.H.N.); (S.T.N.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence:
| |
Collapse
|