1
|
Saifi I, Bhat BA, Hamdani SS, Bhat UY, Lobato-Tapia CA, Mir MA, Dar TUH, Ganie SA. Artificial intelligence and cheminformatics tools: a contribution to the drug development and chemical science. J Biomol Struct Dyn 2024; 42:6523-6541. [PMID: 37434311 DOI: 10.1080/07391102.2023.2234039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
In the ever-evolving field of drug discovery, the integration of Artificial Intelligence (AI) and Machine Learning (ML) with cheminformatics has proven to be a powerful combination. Cheminformatics, which combines the principles of computer science and chemistry, is used to extract chemical information and search compound databases, while the application of AI and ML allows for the identification of potential hit compounds, optimization of synthesis routes, and prediction of drug efficacy and toxicity. This collaborative approach has led to the discovery, preclinical evaluations and approval of over 70 drugs in recent years. To aid researchers in the pursuit of new drugs, this article presents a comprehensive list of databases, datasets, predictive and generative models, scoring functions and web platforms that have been launched between 2021 and 2022. These resources provide a wealth of information and tools for computer-assisted drug development, and are a valuable asset for those working in the field of cheminformatics. Overall, the integration of AI, ML and cheminformatics has greatly advanced the drug discovery process and continues to hold great potential for the future. As new resources and technologies become available, we can expect to see even more groundbreaking discoveries and advancements in these fields.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ifra Saifi
- Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Syed Suhail Hamdani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Umar Yousuf Bhat
- Department of Zoology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | | | - Mushtaq Ahmad Mir
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, KSA, Saudi Arabia
| | - Tanvir Ul Hasan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| |
Collapse
|
2
|
Gadiya Y, Shetty S, Hofmann-Apitius M, Gribbon P, Zaliani A. Exploring SureChEMBL from a drug discovery perspective. Sci Data 2024; 11:507. [PMID: 38755219 PMCID: PMC11099139 DOI: 10.1038/s41597-024-03371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
In the pharmaceutical industry, the patent protection of drugs and medicines is accorded importance because of the high costs involved in the development of novel drugs. Over the years, researchers have analyzed patent documents to identify freedom-to-operate spaces for novel drug candidates. To assist this, several well-established public patent document data repositories have enabled automated methodologies for extracting information on therapeutic agents. In this study, we delve into one such publicly available patent database, SureChEMBL, which catalogues patent documents related to life sciences. Our exploration begins by identifying patent compounds across public chemical data resources, followed by pinpointing sections in patent documents where the chemical annotations were found. Next, we exhibit the potential of compounds to serve as drug candidates by evaluating their conformity to drug-likeness criteria. Lastly, we examine the drug development stage reported for these compounds to understand their clinical success. In summary, our investigation aims at providing a comprehensive overview of the patent compounds catalogued in SureChEMBL, assessing their relevance to pharmaceutical drug discovery.
Collapse
Affiliation(s)
- Yojana Gadiya
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525, Hamburg, Germany.
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern Kai 7, 60590, Frankfurt, Germany.
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany.
| | - Simran Shetty
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern Kai 7, 60590, Frankfurt, Germany
- Hamburg University of Applied Sciences (HAW), 20099, Hamburg, Germany
| | - Martin Hofmann-Apitius
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
3
|
Zhu TF, Qian R, Wei X, Lu AP, Cao DS. PatentNetML: A Novel Framework for Predicting Key Compounds in Patents Using Network Science and Machine Learning. J Med Chem 2024; 67:1347-1359. [PMID: 38181431 DOI: 10.1021/acs.jmedchem.3c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Patents play a crucial role in drug research and development, providing early access to unpublished data and offering unique insights. Identifying key compounds in patents is essential to finding novel lead compounds. This study collected a comprehensive data set comprising 1555 patents, encompassing 1000 key compounds, to explore innovative approaches for predicting these key compounds. Our novel PatentNetML framework integrated network science and machine learning algorithms, combining network measures, ADMET properties, and physicochemical properties, to construct robust classification models to identify key compounds. Through a model interpretation and an analysis of three compelling case studies, we showcase the potential of PatentNetML in unveiling hidden patterns and connections within diverse patents. While our framework is pioneering, we acknowledge its limitations when applied to patents that deviate from the assumed central pattern. This work serves as a promising foundation for future research endeavors aimed at efficiently identifying promising drug candidates and expediting drug discovery in the pharmaceutical industry.
Collapse
Affiliation(s)
- Ting-Fei Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410003, Hunan, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Rong Qian
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410003, Hunan, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Xiao Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410003, Hunan, China
| | - Ai-Ping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510000, China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410003, Hunan, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Martinez-Sevillano M, Falaguera MJ, Mestres J. CIPSI: An open chemical intellectual property service for medicinal chemists. Mol Inform 2024; 43:e202300221. [PMID: 38010631 DOI: 10.1002/minf.202300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
The availability of patent chemical data offers public access to a chemical space that is not well covered by other sources collecting small molecules from scholarly literature. However, open applications to facilitate the search and analysis of biologically-relevant molecular structures present in patents are still largely missing. We have developed CIPSI, an open Chemical Intellectual Property Service @ IMIM to assist medicinal chemists in searching and analysing molecules in SureChEMBL patents. The current version contains 6,240,500 molecules from 236,689 pharmacological patents, of which 5,949,214 are confidently assigned to core chemical structures reminiscent of the Markush structure in the patent claim. The platform includes some graphical tools to facilitate comparative patent analyses between drugs, chemical substructures, and company assignees. CIPSI is available at https://cipsi.org.
Collapse
Affiliation(s)
- Maria Martinez-Sevillano
- Systems Pharmacology, Research Group on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08028, Barcelona, Spain
| | - Maria J Falaguera
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Jordi Mestres
- Systems Pharmacology, Research Group on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08028, Barcelona, Spain
- Institut de Quimica Computacional i Catalisi, Facultat de Ciencies, Universitat de Girona, Maria Aurelia Capmany 69, 17003, Girona, Spain
| |
Collapse
|
5
|
Shimizu Y, Ohta M, Ishida S, Terayama K, Osawa M, Honma T, Ikeda K. AI-driven molecular generation of not-patented pharmaceutical compounds using world open patent data. J Cheminform 2023; 15:120. [PMID: 38093324 PMCID: PMC10716930 DOI: 10.1186/s13321-023-00791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
Developing compounds with novel structures is important for the production of new drugs. From an intellectual perspective, confirming the patent status of newly developed compounds is essential, particularly for pharmaceutical companies. The generation of a large number of compounds has been made possible because of the recent advances in artificial intelligence (AI). However, confirming the patent status of these generated molecules has been a challenge because there are no free and easy-to-use tools that can be used to determine the novelty of the generated compounds in terms of patents in a timely manner; additionally, there are no appropriate reference databases for pharmaceutical patents in the world. In this study, two public databases, SureChEMBL and Google Patents Public Datasets, were used to create a reference database of drug-related patented compounds using international patent classification. An exact structure search system was constructed using InChIKey and a relational database system to rapidly search for compounds in the reference database. Because drug-related patented compounds are a good source for generative AI to learn useful chemical structures, they were used as the training data. Furthermore, molecule generation was successfully directed by increasing and decreasing the number of generated patented compounds through incorporation of patent status (i.e., patented or not) into learning. The use of patent status enabled generation of novel molecules with high drug-likeness. The generation using generative AI with patent information would help efficiently propose novel compounds in terms of pharmaceutical patents. Scientific contribution: In this study, a new molecule-generation method that takes into account the patent status of molecules, which has rarely been considered but is an important feature in drug discovery, was developed. The method enables the generation of novel molecules based on pharmaceutical patents with high drug-likeness and will help in the efficient development of effective drug compounds.
Collapse
Affiliation(s)
- Yugo Shimizu
- HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masateru Ohta
- HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Shoichi Ishida
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Kei Terayama
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Masanori Osawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Teruki Honma
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Kazuyoshi Ikeda
- HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
6
|
Ahmad I, Kuznetsov AE, Pirzada AS, Alsharif KF, Daglia M, Khan H. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Front Chem 2023; 11:1145974. [PMID: 37123881 PMCID: PMC10133580 DOI: 10.3389/fchem.2023.1145974] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Computational pharmacology and chemistry of drug-like properties along with pharmacokinetic studies have made it more amenable to decide or predict a potential drug candidate. 4-Hydroxyisoleucine is a pharmacologically active natural product with prominent antidiabetic properties. In this study, ADMETLab 2.0 was used to determine its important drug-related properties. 4-Hydroxyisoleucine is compliant with important drug-like physicochemical properties and pharma giants' drug-ability rules like Lipinski's, Pfizer, and GlaxoSmithKline (GSK) rules. Pharmacokinetically, it has been predicted to have satisfactory cell permeability. Blood-brain barrier permeation may add central nervous system (CNS) effects, while a very slight probability of being CYP2C9 substrate exists. None of the well-known toxicities were predicted in silico, being congruent with wet lab results, except for a "very slight risk" for respiratory toxicity predicted. The molecule is non ecotoxic as analyzed with common indicators such as bioconcentration and LC50 for fathead minnow and daphnia magna. The toxicity parameters identified 4-hydroxyisoleucine as non-toxic to androgen receptors, PPAR-γ, mitochondrial membrane receptor, heat shock element, and p53. However, out of seven parameters, not even a single toxicophore was found. The density functional theory (DFT) study provided support to the findings obtained from drug-like property predictions. Hence, it is a very logical approach to proceed further with a detailed pharmacokinetics and drug development process for 4-hydroxyisoleucine.
Collapse
Affiliation(s)
- Imad Ahmad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Aleksey E. Kuznetsov
- Department of Chemistry, Universidad Tecnica Federico Santa Maria, Santiago, Chile
| | | | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- International Research Centre for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- *Correspondence: Haroon Khan,
| |
Collapse
|
7
|
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2023 update. Nucleic Acids Res 2022; 51:D1373-D1380. [PMID: 36305812 PMCID: PMC9825602 DOI: 10.1093/nar/gkac956] [Citation(s) in RCA: 1306] [Impact Index Per Article: 435.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 01/30/2023] Open
Abstract
PubChem (https://pubchem.ncbi.nlm.nih.gov) is a popular chemical information resource that serves a wide range of use cases. In the past two years, a number of changes were made to PubChem. Data from more than 120 data sources was added to PubChem. Some major highlights include: the integration of Google Patents data into PubChem, which greatly expanded the coverage of the PubChem Patent data collection; the creation of the Cell Line and Taxonomy data collections, which provide quick and easy access to chemical information for a given cell line and taxon, respectively; and the update of the bioassay data model. In addition, new functionalities were added to the PubChem programmatic access protocols, PUG-REST and PUG-View, including support for target-centric data download for a given protein, gene, pathway, cell line, and taxon and the addition of the 'standardize' option to PUG-REST, which returns the standardized form of an input chemical structure. A significant update was also made to PubChemRDF. The present paper provides an overview of these changes.
Collapse
Affiliation(s)
- Sunghwan Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Jie Chen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Asta Gindulyte
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Jia He
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Siqian He
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Qingliang Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Benjamin A Shoemaker
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Paul A Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Bo Yu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Leonid Zaslavsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Evan E Bolton
- To whom correspondence should be addressed. Tel: +1 301 451 1811; Fax: +1 301 480 4559;
| |
Collapse
|
8
|
Ohms J. Validity of PubChem compounds supplied by Patentscope or SureChEMBL. WORLD PATENT INFORMATION 2022. [DOI: 10.1016/j.wpi.2022.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Long S, Ji S, Xue P, Xie H, Ma Y, Zhu S. Network pharmacology and molecular docking analysis reveal insights into the molecular mechanism of shiliao decoction in the treatment of cancer-associated malnutrition. Front Nutr 2022; 9:985991. [PMID: 36091226 PMCID: PMC9452828 DOI: 10.3389/fnut.2022.985991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeShiliao Decoction (SLD) was developed for treatment and prevention of cancer-associated malnutrition (CAM) in China. In this study, we aim to discover SLD’s active compounds and demonstrate the mechanisms of SLD that combat CAM through network pharmacology and molecular docking techniques.MethodsAll components of SLD were retrieved from the pharmacology database of Traditional Chinese Medicine Systems Pharmacology (TCMSP). The GeneCards database and the Online Mendelian Inheritance in Man database (OMIM) were used to identify gene encoding target compounds, and Cytoscape was used to construct the drug compound–target network. The network of target protein-protein interactions (PPI) was constructed using the STRING database, while gene ontology (GO) functional terms and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways associated with potential targets were analyzed using a program in R language (version 4.2.0). Core genes linked with survival and the tumor microenvironment were analyzed using the Kaplan–Meier plotter and TIMER 2.0 databases, respectively. Protein expression and transcriptome expression levels of core gene were viewed using the Human Protein Atlas (HPA) and the Cancer Genome Atlas (TCGA). A component-target-pathway (C-T-P) network was created using Cytoscape, and Autodock Vina software was used to verify the molecular docking of SLD components and key targets.ResultsThe assembled compound–target network primarily contained 134 compounds and 147 targets of the SLD associated with JUN, TP53, MAPK3, MAPK1, MAPK14, STAT3, AKT1, HSP90AA1, FOS, and MYC, which were identified as core targets by the PPI network. KEGG pathway analysis revealed pathways involved in lipid and atherosclerosis, the PI3K/Akt signaling pathway, and immune-related pathways among others. JUN is expressed at different levels in normal and cancerous tissues, it is closely associated with the recruitment of different immune cells and has been shown to have a significant impact on prognosis. The C-T-P network suggests that the active component of SLD is capable of regulating target genes affecting these related pathways. Finally, the reliability of the core targets was evaluated using molecular docking technology.ConclusionThis study revealed insights into SLD’s active components, potential targets, and possible molecular mechanisms, thereby demonstrating a potential method for examining the scientific basis and therapeutic mechanisms of TCM formulae.
Collapse
Affiliation(s)
- Sidan Long
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuangshuang Ji
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Xue
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongting Xie
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yinjie Ma
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yinjie Ma,
| | - Shijie Zhu
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Shijie Zhu,
| |
Collapse
|
10
|
Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system. Mol Divers 2022; 27:959-985. [PMID: 35819579 DOI: 10.1007/s11030-022-10489-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022]
Abstract
CNS disorders are indications with a very high unmet medical needs, relatively smaller number of available drugs, and a subpar satisfaction level among patients and caregiver. Discovery of CNS drugs is extremely expensive affair with its own unique challenges leading to extremely high attrition rates and low efficiency. With explosion of data in information age, there is hardly any aspect of life that has not been touched by data driven technologies such as artificial intelligence (AI) and machine learning (ML). Drug discovery is no exception, emergence of big data via genomic, proteomic, biological, and chemical technologies has driven pharmaceutical giants to collaborate with AI oriented companies to revolutionise drug discovery, with the goal of increasing the efficiency of the process. In recent years many examples of innovative applications of AI and ML techniques in CNS drug discovery has been reported. Research on therapeutics for diseases such as schizophrenia, Alzheimer's and Parkinsonism has been provided with a new direction and thrust from these developments. AI and ML has been applied to both ligand-based and structure-based drug discovery and design of CNS therapeutics. In this review, we have summarised the general aspects of AI and ML from the perspective of drug discovery followed by a comprehensive coverage of the recent developments in the applications of AI/ML techniques in CNS drug discovery.
Collapse
|
11
|
Congenericity of Claimed Compounds in Patent Applications. Molecules 2021; 26:molecules26175253. [PMID: 34500686 PMCID: PMC8433967 DOI: 10.3390/molecules26175253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022] Open
Abstract
A method is presented to analyze quantitatively the degree of congenericity of claimed compounds in patent applications. The approach successfully differentiates patents exemplified with highly congeneric compounds of a structurally compact and well defined chemical series from patents containing a more diverse set of compounds around a more vaguely described patent claim. An application to 750 common patents available in SureChEMBL, SureChEMBLccs and ChEMBL is presented and the congenericity of patent compounds in those different sources discussed.
Collapse
|