1
|
Wang B, Tieleman DP. The structure, self-assembly and dynamics of lipid nanodiscs revealed by computational approaches. Biophys Chem 2024; 309:107231. [PMID: 38569455 DOI: 10.1016/j.bpc.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Nanodisc technology is increasingly being used in structural, biochemical and biophysical studies of membrane proteins. The computational approaches have revealed many important features of nanodisc assembly, structures and dynamics. Therefore, we reviewed the application of computational approaches, especially molecular modeling and molecular dyncamics (MD) simulations, to characterize nanodiscs, including the structural models, assembly and disassembly, protocols for modeling, structural properties and dynamics, and protein-lipid interactions in nanodiscs. More amazing computational studies about nanodiscs are looked forward to in the future.
Collapse
Affiliation(s)
- Beibei Wang
- Centre for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
2
|
Borges-Araújo L, Patmanidis I, Singh AP, Santos LHS, Sieradzan AK, Vanni S, Czaplewski C, Pantano S, Shinoda W, Monticelli L, Liwo A, Marrink SJ, Souza PCT. Pragmatic Coarse-Graining of Proteins: Models and Applications. J Chem Theory Comput 2023; 19:7112-7135. [PMID: 37788237 DOI: 10.1021/acs.jctc.3c00733] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The molecular details involved in the folding, dynamics, organization, and interaction of proteins with other molecules are often difficult to assess by experimental techniques. Consequently, computational models play an ever-increasing role in the field. However, biological processes involving large-scale protein assemblies or long time scale dynamics are still computationally expensive to study in atomistic detail. For these applications, employing coarse-grained (CG) modeling approaches has become a key strategy. In this Review, we provide an overview of what we call pragmatic CG protein models, which are strategies combining, at least in part, a physics-based implementation and a top-down experimental approach to their parametrization. In particular, we focus on CG models in which most protein residues are represented by at least two beads, allowing these models to retain some degree of chemical specificity. A description of the main modern pragmatic protein CG models is provided, including a review of the most recent applications and an outlook on future perspectives in the field.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Ilias Patmanidis
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Akhil P Singh
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Lucianna H S Santos
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Inserm, CNRS, 06560 Valbonne, France
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita, Okayama 700-8530, Japan
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Adam Liwo
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| |
Collapse
|
3
|
Feng S, Park S, Choi YK, Im W. CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. J Chem Theory Comput 2023; 19:2161-2185. [PMID: 37014931 PMCID: PMC10174225 DOI: 10.1021/acs.jctc.2c01246] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/06/2023]
Abstract
Molecular dynamics simulations of membranes and membrane proteins serve as computational microscopes, revealing coordinated events at the membrane interface. As G protein-coupled receptors, ion channels, transporters, and membrane-bound enzymes are important drug targets, understanding their drug binding and action mechanisms in a realistic membrane becomes critical. Advances in materials science and physical chemistry further demand an atomistic understanding of lipid domains and interactions between materials and membranes. Despite a wide range of membrane simulation studies, generating a complex membrane assembly remains challenging. Here, we review the capability of CHARMM-GUI Membrane Builder in the context of emerging research demands, as well as the application examples from the CHARMM-GUI user community, including membrane biophysics, membrane protein drug-binding and dynamics, protein-lipid interactions, and nano-bio interface. We also provide our perspective on future Membrane Builder development.
Collapse
Affiliation(s)
- Shasha Feng
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Soohyung Park
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yeol Kyo Choi
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
5
|
Barclay A, Tidemand Johansen N, Tidemand FG, Arleth L, Pedersen MC. Global fitting of multiple data frames from SEC-SAXS to investigate the structure of next-generation nanodiscs. Acta Crystallogr D Struct Biol 2022; 78:483-493. [PMID: 35362471 PMCID: PMC8972807 DOI: 10.1107/s2059798322001838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
The combination of online size-exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) is rapidly becoming a key technique for structural investigations of elaborate biophysical samples in solution. Here, a novel model-refinement strategy centred around the technique is outlined and its utility is demonstrated by analysing data series from several SEC-SAXS experiments on phospholipid bilayer nanodiscs. Using this method, a single model was globally refined against many frames from the same data series, thereby capturing the frame-to-frame tendencies of the irradiated sample. These are compared with models refined in the traditional manner, in which refinement is based on the average profile of a set of consecutive frames from the same data series without an in-depth comparison of individual frames. This is considered to be an attractive model-refinement scheme as it considerably lowers the total number of parameters refined from the data series, produces tendencies that are automatically consistent between frames, and utilizes a considerably larger portion of the recorded data than is often performed in such experiments. Additionally, a method is outlined for correcting a measured UV absorption signal by accounting for potential peak broadening by the experimental setup.
Collapse
Affiliation(s)
- Abigail Barclay
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
| | - Nicolai Tidemand Johansen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
| | - Martin Cramer Pedersen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
| |
Collapse
|