1
|
Posani E, Janoš P, Haack D, Toor N, Bonomi M, Magistrato A, Bussi G. Ensemble refinement of mismodeled cryo-EM RNA structures using all-atom simulations. Nat Commun 2025; 16:4549. [PMID: 40379699 PMCID: PMC12084557 DOI: 10.1038/s41467-025-59769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
The advent of single-particle cryogenic electron microscopy (cryo-EM) has enabled near-atomic resolution imaging of large macromolecules, enhancing functional insights. However, current cryo-EM refinement tools condense all single-particle images into a single structure, which can misrepresent highly flexible molecules like RNAs. Here, we combine molecular dynamics simulations with cryo-EM density maps to better account for the structural dynamics of a complex and biologically relevant RNA macromolecule. Namely, using metainference, a Bayesian method, we reconstruct an ensemble of structures of the group II intron ribozyme, which better matches experimental data, and we reveal inaccuracies of single-structure approaches in modeling flexible regions. An analysis of all RNA-containing structures deposited in the Protein Data Bank reveals that this issue affects most cryo-EM structures in the 2.5-4 Å range. Thus, RNA structures determined by cryo-EM require careful handling, and our method may be broadly applicable to other RNA systems.
Collapse
Affiliation(s)
- Elisa Posani
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | | | - Daniel Haack
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Navtej Toor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Massimiliano Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France
| | | | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
2
|
Jung J, Yagi K, Tan C, Oshima H, Mori T, Yu I, Matsunaga Y, Kobayashi C, Ito S, Ugarte La Torre D, Sugita Y. GENESIS 2.1: High-Performance Molecular Dynamics Software for Enhanced Sampling and Free-Energy Calculations for Atomistic, Coarse-Grained, and Quantum Mechanics/Molecular Mechanics Models. J Phys Chem B 2024; 128:6028-6048. [PMID: 38876465 PMCID: PMC11215777 DOI: 10.1021/acs.jpcb.4c02096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
GENeralized-Ensemble SImulation System (GENESIS) is a molecular dynamics (MD) software developed to simulate the conformational dynamics of a single biomolecule, as well as molecular interactions in large biomolecular assemblies and between multiple biomolecules in cellular environments. To achieve the latter purpose, the earlier versions of GENESIS emphasized high performance in atomistic MD simulations on massively parallel supercomputers, with or without graphics processing units (GPUs). Here, we implemented multiscale MD simulations that include atomistic, coarse-grained, and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. They demonstrate high performance and are integrated with enhanced conformational sampling algorithms and free-energy calculations without using external programs except for the QM programs. In this article, we review new functions, molecular models, and other essential features in GENESIS version 2.1 and discuss ongoing developments for future releases.
Collapse
Affiliation(s)
- Jaewoon Jung
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kiyoshi Yagi
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Cheng Tan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Hiraku Oshima
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate
School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan
| | - Takaharu Mori
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
- Department
of Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Isseki Yu
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
- Department
of Bioinformatics, Maebashi Institute of
Technology, Maebashi, Gunma 371-0816, Japan
| | - Yasuhiro Matsunaga
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
- Graduate
School of Science and Engineering, Saitama
University, Saitama 338-8570, Japan
| | - Chigusa Kobayashi
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Shingo Ito
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Diego Ugarte La Torre
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Yuji Sugita
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
3
|
de la Cruz MJ, Eng ET. Scaling up cryo-EM for biology and chemistry: The journey from niche technology to mainstream method. Structure 2023; 31:1487-1498. [PMID: 37820731 PMCID: PMC10841453 DOI: 10.1016/j.str.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Cryoelectron microscopy (cryo-EM) methods have made meaningful contributions in a wide variety of scientific research fields. In structural biology, cryo-EM routinely elucidates molecular structure from isolated biological macromolecular complexes or in a cellular context by harnessing the high-resolution power of the electron in order to image samples in a frozen, hydrated environment. For structural chemistry, the cryo-EM method popularly known as microcrystal electron diffraction (MicroED) has facilitated atomic structure generation of peptides and small molecules from their three-dimensional crystal forms. As cryo-EM has grown from an emerging technology, it has undergone modernization to enable multimodal transmission electron microscopy (TEM) techniques becoming more routine, reproducible, and accessible to accelerate research across multiple disciplines. We review recent advances in modern cryo-EM and assess how they are contributing to the future of the field with an eye to the past.
Collapse
Affiliation(s)
- M Jason de la Cruz
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Edward T Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA.
| |
Collapse
|
4
|
Park J, Joung I, Joo K, Lee J. Application of conformational space annealing to the protein structure modeling using cryo-EM maps. J Comput Chem 2023; 44:2332-2346. [PMID: 37585026 DOI: 10.1002/jcc.27200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/26/2023] [Accepted: 07/16/2023] [Indexed: 08/17/2023]
Abstract
Conformational space annealing (CSA), a global optimization method, has been applied to various protein structure modeling tasks. In this paper, we applied CSA to the cryo-EM structure modeling task by combining the python subroutine of CSA (PyCSA) and the fast relax (FastRelax) protocol of PyRosetta. Refinement of initial structures generated from two methods, rigid fitting of predicted structures to the Cryo-EM map and de novo protein modeling by tracing the Cryo-EM map, was performed by CSA. In the refinement of the rigid-fitted structures, the final models showed that CSA can generate reliable atomic structures of proteins, even when large movements of protein domains were required. In the de novo modeling case, although the overall structural qualities of the final models were rather dependent on the initial models, the final models generated by CSA showed improved MolProbity scores and cross-correlation coefficients to the maps. These results suggest that CSA can accomplish flexible fitting and refinement together by sampling diverse conformations effectively and thus can be utilized for cryo-EM structure modeling.
Collapse
Affiliation(s)
| | | | - Keehyoung Joo
- Center for Advanced Computations, Korea Institute for Advanced Study, Seoul, South Korea
| | - Jooyoung Lee
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| |
Collapse
|
5
|
Miyashita O, Tama F. Advancing cryo-electron microscopy data analysis through accelerated simulation-based flexible fitting approaches. Curr Opin Struct Biol 2023; 82:102653. [PMID: 37451233 DOI: 10.1016/j.sbi.2023.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Flexible fitting based on molecular dynamics simulation is a technique for structure modeling from cryo-EM data. It has been utilized for nearly two decades, and while cryo-EM resolution has improved significantly, it remains a powerful approach that can provide structural and dynamical insights that are not directly accessible from experimental data alone. Molecular dynamics simulations provide a means to extract atomistic details of conformational changes that are encoded in cryo-EM data and can also assist in improving the quality of structural models. Additionally, molecular dynamics simulations enable the characterization of conformational heterogeneity in cryo-EM data. We will summarize the advancements made in these techniques and highlight recent developments in this field.
Collapse
Affiliation(s)
- Osamu Miyashita
- RIKEN Center for Computational Science, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Florence Tama
- RIKEN Center for Computational Science, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
6
|
Yvonnesdotter L, Rovšnik U, Blau C, Lycksell M, Howard RJ, Lindahl E. Automated simulation-based membrane protein refinement into cryo-EM data. Biophys J 2023; 122:2773-2781. [PMID: 37277992 PMCID: PMC10397807 DOI: 10.1016/j.bpj.2023.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/02/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023] Open
Abstract
The resolution revolution has increasingly enabled single-particle cryogenic electron microscopy (cryo-EM) reconstructions of previously inaccessible systems, including membrane proteins-a category that constitutes a disproportionate share of drug targets. We present a protocol for using density-guided molecular dynamics simulations to automatically refine atomistic models into membrane protein cryo-EM maps. Using adaptive force density-guided simulations as implemented in the GROMACS molecular dynamics package, we show how automated model refinement of a membrane protein is achieved without the need to manually tune the fitting force ad hoc. We also present selection criteria to choose the best-fit model that balances stereochemistry and goodness of fit. The proposed protocol was used to refine models into a new cryo-EM density of the membrane protein maltoporin, either in a lipid bilayer or detergent micelle, and we found that results do not substantially differ from fitting in solution. Fitted structures satisfied classical model-quality metrics and improved the quality and the model-to-map correlation of the x-ray starting structure. Additionally, the density-guided fitting in combination with generalized orientation-dependent all-atom potential was used to correct the pixel-size estimation of the experimental cryo-EM density map. This work demonstrates the applicability of a straightforward automated approach to fitting membrane protein cryo-EM densities. Such computational approaches promise to facilitate rapid refinement of proteins under different conditions or with various ligands present, including targets in the highly relevant superfamily of membrane proteins.
Collapse
Affiliation(s)
- Linnea Yvonnesdotter
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Urška Rovšnik
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Christian Blau
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Marie Lycksell
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Rebecca Joy Howard
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Erik Lindahl
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden; Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
7
|
Lee S, Seok C, Park H. Benchmarking applicability of medium-resolution cryo-EM protein structures for structure-based drug design. J Comput Chem 2023; 44:1360-1368. [PMID: 36847771 DOI: 10.1002/jcc.27091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 03/01/2023]
Abstract
Cryo-electron microscopy (cryo-EM) is gaining large attention for high-resolution protein structure determination in solutions. However, a very high percentage of cryo-EM structures correspond to resolutions of 3-5 Å, making the structures difficult to be used in in silico drug design. In this study, we analyze how useful cryo-EM protein structures are for in silico drug design by evaluating ligand docking accuracy. From realistic cross-docking scenarios using medium resolution (3-5 Å) cryo-EM structures and a popular docking tool Autodock-Vina, only 20% of docking succeeded, when the success rate doubles in the same kind of cross-docking but using high-resolution (<2 Å) crystal structures instead. We decipher the reason for failures by decomposing the contribution from resolution-dependent and independent factors. The heterogeneity in the protein side-chain and backbone conformations is identified as the major resolution-dependent factor causing docking difficulty from our analysis, while intrinsic receptor flexibility mainly comprises the resolution-independent factor. We demonstrate the flexibility implementation in current ligand docking tools is able to rescue only a portion of failures (10%), and the limited performance was majorly due to potential structural errors than conformational changes. Our work suggests the strong necessity of more robust method developments on ligand docking and EM modeling techniques in order to fully utilize cryo-EM structures for in silico drug design.
Collapse
Affiliation(s)
- Seho Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.,Galux Inc., Seoul, Republic of Korea
| | - Hahnbeom Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
8
|
Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images. PLoS Comput Biol 2022; 18:e1010384. [PMID: 36580448 PMCID: PMC9833559 DOI: 10.1371/journal.pcbi.1010384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/11/2023] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
High-speed atomic force microscopy (HS-AFM) is a powerful technique for capturing the time-resolved behavior of biomolecules. However, structural information in HS-AFM images is limited to the surface geometry of a sample molecule. Inferring latent three-dimensional structures from the surface geometry is thus important for getting more insights into conformational dynamics of a target biomolecule. Existing methods for estimating the structures are based on the rigid-body fitting of candidate structures to each frame of HS-AFM images. Here, we extend the existing frame-by-frame rigid-body fitting analysis to multiple frames to exploit orientational correlations of a sample molecule between adjacent frames in HS-AFM data due to the interaction with the stage. In the method, we treat HS-AFM data as time-series data, and they are analyzed with the hidden Markov modeling. Using simulated HS-AFM images of the taste receptor type 1 as a test case, the proposed method shows a more robust estimation of molecular orientations than the frame-by-frame analysis. The method is applicable in integrative modeling of conformational dynamics using HS-AFM data.
Collapse
|
9
|
Harastani M, Vuillemot R, Hamitouche I, Moghadam NB, Jonic S. ContinuousFlex: Software package for analyzing continuous conformational variability of macromolecules in cryo electron microscopy and tomography data. J Struct Biol 2022; 214:107906. [PMID: 36244611 DOI: 10.1016/j.jsb.2022.107906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
ContinuousFlex is a user-friendly open-source software package for analyzing continuous conformational variability of macromolecules in cryo electron microscopy (cryo-EM) and cryo electron tomography (cryo-ET) data. In 2019, ContinuousFlex became available as a plugin for Scipion, an image processing software package extensively used in the cryo-EM field. Currently, ContinuousFlex contains software for running (1) recently published methods HEMNMA-3D, TomoFlow, and NMMD; (2) earlier published methods HEMNMA and StructMap; and (3) methods for simulating cryo-EM and cryo-ET data with conformational variability and methods for data preprocessing. It also includes external software for molecular dynamics simulation (GENESIS) and normal mode analysis (ElNemo), used in some of the mentioned methods. The HEMNMA software has been presented in the past, but not the software of other methods. Besides, ContinuousFlex currently also offers a deep learning extension of HEMNMA, named DeepHEMNMA. In this article, we review these methods in the context of the ContinuousFlex package, developed to facilitate their use by the community.
Collapse
Affiliation(s)
- Mohamad Harastani
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Rémi Vuillemot
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Ilyes Hamitouche
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Nima Barati Moghadam
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Slavica Jonic
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|