1
|
Vong D, Maleki F, Novak EC, Daemen LL, Moulé AJ. Measuring Intermolecular Excited State Geometry for Favorable Singlet Fission in Tetracene. J Phys Chem Lett 2024; 15:1188-1194. [PMID: 38270396 DOI: 10.1021/acs.jpclett.3c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Singlet fission (SF) is the process of converting an excited singlet to a pair of excited triplets. Harvesting two charges from a single photon has the potential to increase photovoltaic device efficiencies. Acenes, such as tetracene and pentacene, are model molecules for studying SF. Despite SF being an endoergic process for tetracene and exoergic for pentacene, both acenes exhibit near unity SF quantum efficiencies, raising questions about how tetracene can overcome the energy barrier. Here, we use recently developed instrumentation to measure inelastic neutron scattering (INS) while optically exciting the model molecules using two different excitation energies. The spectroscopic results reveal intermolecular structural relaxation due to the presence of a triplet excited state. The structural dynamics of the combined excited state molecule and surrounding tetracene molecules are further studied using time-dependent density functional theory (TD-DFT), which shows that the singlet and triplet levels shift due to the excited state geometry, reducing the uphill energy barrier for SF to within kT.
Collapse
Affiliation(s)
- Daniel Vong
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616, United States
| | - Farahnaz Maleki
- Department of Chemical Engineering, University of California Davis, Davis, California 95616, United States
| | - Eric C Novak
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Adam J Moulé
- Department of Chemical Engineering, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
2
|
Cavalcante LSR, Dettmann MA, Sours T, Yang D, Daemen LL, Gates BC, Kulkarni AR, Moulé AJ. Elucidating correlated defects in metal organic frameworks using theory-guided inelastic neutron scattering spectroscopy. MATERIALS HORIZONS 2023; 10:187-196. [PMID: 36330997 DOI: 10.1039/d2mh00914e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal organic frameworks (MOFs) that incorporate metal oxide cluster nodes, exemplified by UiO-66, have been widely studied, especially in terms of their deviations from the ideal, defect-free crystalline structures. Although defects such as missing linkers, missing nodes, and the presence of adventitious synthesis-derived node ligands (such as acetates and formates) have been proposed, their exact structures remain unknown. Previously, it was demonstrated that defects are correlated and span multiple unit cells. The highly specialized techniques used in these studies are not easily applicable to other MOFs. Thus, there is a need to develop new experimental and computational approaches to understand the structure and properties of defects in a wider variety of MOFs. Here, we show how low-frequency phonon modes measured by inelastic neutron scattering (INS) spectroscopy can be combined with density functional theory (DFT) simulations to provide unprecedented insights into the defect structure of UiO-66. We are able to identify and assign peaks in the fingerprint region (<100 cm-1) which correspond to phonon modes only present in certain defective topologies. Specifically, this analysis suggests that our sample of UiO-66 consists of predominantly defect-free fcu regions with smaller domains corresponding to a defective bcu topology with 4 and 2 acetate ligands bound to the Zr6O8 nodes. Importantly, the INS/DFT approach provides detailed structural insights (e.g., relative positions and numbers of acetate ligands) that are not accessible with microscopy-based techniques. The quantitative agreement between DFT simulations and the experimental INS spectrum combined with the relative simplicity of sample preparation, suggests that this methodology may become part of the standard and preferred protocol for the characterization of MOFs, and, in particular, for elucidating the structure defects in these materials.
Collapse
Affiliation(s)
- Lucas S R Cavalcante
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA.
| | - Makena A Dettmann
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA.
| | - Tyler Sours
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA.
| | - Dong Yang
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA.
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA.
| | - Ambarish R Kulkarni
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA.
| | - Adam J Moulé
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Dettmann MA, Cavalcante LSR, Magdaleno C, Masalkovaitė K, Vong D, Dull JT, Rand BP, Daemen LL, Goldman N, Faller R, Moulé AJ. Comparing the Expense and Accuracy of Methods to Simulate Atomic Vibrations in Rubrene. J Chem Theory Comput 2021; 17:7313-7320. [PMID: 34818006 DOI: 10.1021/acs.jctc.1c00747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Atomic vibrations can inform about materials properties from hole transport in organic semiconductors to correlated disorder in metal-organic frameworks. Currently, there are several methods for predicting these vibrations using simulations, but the accuracy-efficiency tradeoffs have not been examined in depth. In this study, rubrene is used as a model system to predict atomic vibrational properties using six different simulation methods: density functional theory, density functional tight binding, density functional tight binding with a Chebyshev polynomial-based correction, a trained machine learning model, a pretrained machine learning model called ANI-1, and a classical forcefield model. The accuracy of each method is evaluated by comparison to the experimental inelastic neutron scattering spectrum. All methods discussed here show some accuracy across a wide energy region, though the Chebyshev-corrected tight-binding method showed the optimal combination of high accuracy with low expense. We then offer broad simulation guidelines to yield efficient, accurate results for inelastic neutron scattering spectrum prediction.
Collapse
Affiliation(s)
- Makena A Dettmann
- University of California Davis, Davis, California 95616, United States
| | | | - Corina Magdaleno
- University of California Davis, Davis, California 95616, United States
| | | | - Daniel Vong
- University of California Davis, Davis, California 95616, United States
| | - Jordan T Dull
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Barry P Rand
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Luke L Daemen
- Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nir Goldman
- University of California Davis, Davis, California 95616, United States.,Lawrence Livermore National Lab, Livermore, California 94550, United States
| | - Roland Faller
- University of California Davis, Davis, California 95616, United States
| | - Adam J Moulé
- University of California Davis, Davis, California 95616, United States
| |
Collapse
|