1
|
Lou C, Yang H, Deng H, Huang M, Li W, Liu G, Lee PW, Tang Y. Chemical rules for optimization of chemical mutagenicity via matched molecular pairs analysis and machine learning methods. J Cheminform 2023; 15:35. [PMID: 36941726 PMCID: PMC10029263 DOI: 10.1186/s13321-023-00707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Chemical mutagenicity is a serious issue that needs to be addressed in early drug discovery. Over a long period of time, medicinal chemists have manually summarized a series of empirical rules for the optimization of chemical mutagenicity. However, given the rising amount of data, it is getting more difficult for medicinal chemists to identify more comprehensive chemical rules behind the biochemical data. Herein, we integrated a large Ames mutagenicity data set with 8576 compounds to derive mutagenicity transformation rules for reversing Ames mutagenicity via matched molecular pairs analysis. A well-trained consensus model with a reasonable applicability domain was constructed, which showed favorable performance in the external validation set with an accuracy of 0.815. The model was used to assess the generalizability and validity of these mutagenicity transformation rules. The results demonstrated that these rules were of great value and could provide inspiration for the structural modifications of compounds with potential mutagenic effects. We also found that the local chemical environment of the attachment points of rules was critical for successful transformation. To facilitate the use of these mutagenicity transformation rules, we integrated them into ADMETopt2 ( http://lmmd.ecust.edu.cn/admetsar2/admetopt2/ ), a free web server for optimization of chemical ADMET properties. The above-mentioned approach would be extended to the optimization of other toxicity endpoints.
Collapse
Affiliation(s)
- Chaofeng Lou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongbin Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Deng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengting Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Philip W Lee
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|