1
|
Tambrin HM, Liu Y, Zhu K, Teng X, Toyama Y, Miao Y, Ludwig A. ARHGAP12 suppresses F-actin assembly to control epithelial tight junction mechanics and paracellular leak pathway permeability. Cell Rep 2025; 44:115511. [PMID: 40198220 DOI: 10.1016/j.celrep.2025.115511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Tight junctions (TJs) control the paracellular transport of ions, solutes, and macromolecules across epithelial barriers. There is evidence that claudin-based ion transport (the pore pathway) and the paracellular transport of macromolecules (the leak pathway) are controlled independently. However, how leak pathway flux is regulated is unclear. Here, we have identified the Cdc42/Rac GTPase-activating protein ARHGAP12 as a specific activator of the leak pathway. ARHGAP12 is recruited to TJs via an interaction between its Src homology (SH3) domain and the TJ protein ZO-2 to suppress N-WASP-mediated F-actin assembly. This dampens junctional tension and promotes the paracellular transport of macromolecules without affecting ion flux. Mechanistically, we demonstrate that the ARHGAP12 tandem WW domain interacts directly with PPxR motifs in the proline-rich domain of N-WASP and thereby attenuates SH3-domain-mediated N-WASP oligomerization and Arp2/3-driven F-actin assembly. Collectively, our data indicate that branched F-actin networks regulate junctional tension to fine-tune the TJ leak pathway.
Collapse
Affiliation(s)
- Hana Maldivita Tambrin
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Yun Liu
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Kexin Zhu
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xiang Teng
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, Singapore 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, Singapore 117411, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
2
|
Martínez-Lumbreras S, Träger LK, Mulorz MM, Payr M, Dikaya V, Hipp C, König J, Sattler M. Intramolecular autoinhibition regulates the selectivity of PRPF40A tandem WW domains for proline-rich motifs. Nat Commun 2024; 15:3888. [PMID: 38719828 PMCID: PMC11079029 DOI: 10.1038/s41467-024-48004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
PRPF40A plays an important role in the regulation of pre-mRNA splicing by mediating protein-protein interactions in the early steps of spliceosome assembly. By binding to proteins at the 5´ and 3´ splice sites, PRPF40A promotes spliceosome assembly by bridging the recognition of the splices. The PRPF40A WW domains are expected to recognize proline-rich sequences in SF1 and SF3A1 in the early spliceosome complexes E and A, respectively. Here, we combine NMR, SAXS and ITC to determine the structure of the PRPF40A tandem WW domains in solution and characterize the binding specificity and mechanism for proline-rich motifs recognition. Our structure of the PRPF40A WW tandem in complex with a high-affinity SF1 peptide reveals contributions of both WW domains, which also enables tryptophan sandwiching by two proline residues in the ligand. Unexpectedly, a proline-rich motif in the N-terminal region of PRPF40A mediates intramolecular interactions with the WW tandem. Using NMR, ITC, mutational analysis in vitro, and immunoprecipitation experiments in cells, we show that the intramolecular interaction acts as an autoinhibitory filter for proof-reading of high-affinity proline-rich motifs in bona fide PRPF40A binding partners. We propose that similar autoinhibitory mechanisms are present in most WW tandem-containing proteins to enhance binding selectivity and regulation of WW/proline-rich peptide interaction networks.
Collapse
Affiliation(s)
- Santiago Martínez-Lumbreras
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| | - Lena K Träger
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Miriam M Mulorz
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128, Mainz, Germany
| | - Marco Payr
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Varvara Dikaya
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Clara Hipp
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Julian König
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128, Mainz, Germany
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
3
|
Kapp-Joswig JO, Keller BG. CommonNNClustering─A Python Package for Generic Common-Nearest-Neighbor Clustering. J Chem Inf Model 2023; 63:1093-1098. [PMID: 36744824 DOI: 10.1021/acs.jcim.2c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Density-based clustering procedures are widely used in a variety of data science applications. Their advantage lies in the capability to find arbitrarily shaped and sized clusters and robustness against outliers. In particular, they proved effective in the analysis of molecular dynamics simulations, where they serve to identify relevant, low-energetic molecular conformations. As such, they can provide a convenient basis for the construction of kinetic (core-set) Markov-state models. Here we present the open-source Python project CommonNNClustering, which provides an easy-to-use and efficient reimplementation of the common-nearest-neighbor (CommonNN) method. The package provides functionalities for hierarchical clustering and an evaluation of the results. We put our emphasis on a generic API design to keep the implementation flexible and open for customization.
Collapse
Affiliation(s)
- Jan-Oliver Kapp-Joswig
- Department of Theoretical Chemistry, Freie Universität Berlin, Arnimallee 22, 14195Berlin, Germany
| | - Bettina G Keller
- Department of Theoretical Chemistry, Freie Universität Berlin, Arnimallee 22, 14195Berlin, Germany
| |
Collapse
|
4
|
Cournia Z, Soares TA, Wahab HA, Amaro RE. Celebrating Diversity, Equity, Inclusion, and Respect in Computational and Theoretical Chemistry. J Chem Inf Model 2022; 62:6287-6291. [PMID: 36567670 DOI: 10.1021/acs.jcim.2c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Thereza A Soares
- Department of Chemistry, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.,Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, 3234 Urey Hall, #0340, 9500 Gilman Drive, La Jolla, 92093-0340 San Diego, California, United States
| |
Collapse
|