1
|
Kamo T, Kuroda K, Nimura S, Guo Y, Kondo S, Nukaga M, Hoshino T. Development of Inhibitory Compounds for Metallo-beta-lactamase through Computational Design and Crystallographic Analysis. Biochemistry 2024; 63:1278-1286. [PMID: 38690676 DOI: 10.1021/acs.biochem.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Metallo-β-lactamases (MBL) deactivate β-lactam antibiotics through a catalytic reaction caused by two zinc ions at the active center. Since MBLs deteriorate a wide range of antibiotics, they are dangerous factors for bacterial multidrug resistance. In this work, organic synthesis, computational design, and crystal structure analysis were performed to obtain potent MBL inhibitors based on a previously identified hit compound. The hit compound comprised 3,4-dihydro-2(1H)-quinolinone linked with a phenyl-ether-methyl group via a thiazole ring. In the first step, the thiazole ring was replaced with a tertiary amine to avoid the planar structure. In the second step, we virtually modified the compound by keeping the quinolinone backbone. Every modified compound was bound to a kind of MBL, imipenemase-1 (IMP-1), and the binding pose was optimized by a molecular mechanics calculation. The binding scores were evaluated for the respective optimized binding poses. Given the predicted binding poses and calculated binding scores, candidate compounds were determined for organic syntheses. The inhibitory activities of the synthesized compounds were measured by an in vitro assay for two kinds of MBLs, IMP-1 and New Delhi metallo-β-lactamase (NDM-1). A quinolinone connected with an amine bound with methyl-phenyl-ether-propyl and cyclohexyl-ethyl showed a 50% inhibitory concentration of 4.8 μM. An X-ray crystal analysis clarified the binding structure of a synthesized compound to IMP-1. The δ-lactam ring of quinolinone was hydrolyzed, and the generated carboxyl group was coordinated with zinc ions. The findings on the chemical structure and binding pose are expected to be a base for developing MBL inhibitors.
Collapse
Affiliation(s)
- Taichi Kamo
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keiichi Kuroda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Saki Nimura
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yan Guo
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shota Kondo
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Michiyoshi Nukaga
- Faculty of Pharmaceutical Sciences, Josai International University, Gumyo, Togane City, Chiba 283-8555, Japan
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
2
|
Ito Y, Lu H, Kitajima M, Ishikawa H, Nakata Y, Iwatani Y, Hoshino T. Sticklac-Derived Natural Compounds Inhibiting RNase H Activity of HIV-1 Reverse Transcriptase. JOURNAL OF NATURAL PRODUCTS 2023; 86:2487-2495. [PMID: 37874155 DOI: 10.1021/acs.jnatprod.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The emergence of drug-resistant viruses is a serious concern in current chemotherapy for human immunodeficiency virus type-1 (HIV-1) infectious diseases. Hence, antiviral drugs aiming at targets that are different from those of approved drugs are still required, and the RNase H activity of HIV-1 reverse transcriptase is a suitable target. In this study, a search of a series of natural compounds was performed to identify the RNase H inhibitors. Three compounds were found to block the RNase H enzymatic activity. A laccaic acid skeleton was observed in all three natural compounds. A hydroxy phenyl group is connected to an anthraquinone backbone in the skeleton. An acetamido-ethyl, amino-carboxy-ethyl, and amino-ethyl are bound to the phenyl in laccaic acids A, C, and E, respectively. Laccaic acid C showed a 50% inhibitory concentration at 8.1 μM. Laccaic acid C also showed inhibitory activity in a cell-based viral proliferation assay. Binding structures of these three laccaic acids were determined by X-ray crystallographic analysis using a recombinant protein composed of the HIV-1 RNase H domain. Two divalent metal ions were located at the catalytic center in which one carbonyl and two hydroxy groups on the anthraquinone backbone chelated two metal ions. Molecular dynamics simulations were performed to examine the stabilities of the binding structures. Laccaic acid C showed the strongest binding to the catalytic site. These findings will be helpful for the design of potent inhibitors with modification of laccaic acids to enhance the binding affinity.
Collapse
Affiliation(s)
- Yuma Ito
- Laboratory of Molecular Design, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Huiyan Lu
- Laboratory of Molecular Design, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mariko Kitajima
- Laboratory of Middle Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hayato Ishikawa
- Laboratory of Middle Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshihiro Nakata
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, Aichi 460-0001, Japan
| | - Yasumasa Iwatani
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, Aichi 460-0001, Japan
- Department of AIDS Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Tyuji Hoshino
- Laboratory of Molecular Design, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
3
|
Borgelt L, Wu P. Targeting Ribonucleases with Small Molecules and Bifunctional Molecules. ACS Chem Biol 2023; 18:2101-2113. [PMID: 37382390 PMCID: PMC10594538 DOI: 10.1021/acschembio.3c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Ribonucleases (RNases) cleave and process RNAs, thereby regulating the biogenesis, metabolism, and degradation of coding and noncoding RNAs. Thus, small molecules targeting RNases have the potential to perturb RNA biology, and RNases have been studied as therapeutic targets of antibiotics, antivirals, and agents for autoimmune diseases and cancers. Additionally, the recent advances in chemically induced proximity approaches have led to the discovery of bifunctional molecules that target RNases to achieve RNA degradation or inhibit RNA processing. Here, we summarize the efforts that have been made to discover small-molecule inhibitors and activators targeting bacterial, viral, and human RNases. We also highlight the emerging examples of RNase-targeting bifunctional molecules and discuss the trends in developing such molecules for both biological and therapeutic applications.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max
Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
| | | |
Collapse
|
4
|
Moianos D, Prifti GM, Makri M, Zoidis G. Targeting Metalloenzymes: The "Achilles' Heel" of Viruses and Parasites. Pharmaceuticals (Basel) 2023; 16:901. [PMID: 37375848 DOI: 10.3390/ph16060901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Metalloenzymes are central to the regulation of a wide range of essential viral and parasitic functions, including protein degradation, nucleic acid modification, and many others. Given the impact of infectious diseases on human health, inhibiting metalloenzymes offers an attractive approach to disease therapy. Metal-chelating agents have been expansively studied as antivirals and antiparasitics, resulting in important classes of metal-dependent enzyme inhibitors. This review provides the recent advances in targeting the metalloenzymes of viruses and parasites that impose a significant burden on global public health, including influenza A and B, hepatitis B and C, and human immunodeficiency viruses as well as Trypanosoma brucei and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria Makri
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
5
|
Cournia Z, Soares TA, Wahab HA, Amaro RE. Celebrating Diversity, Equity, Inclusion, and Respect in Computational and Theoretical Chemistry. J Chem Inf Model 2022; 62:6287-6291. [PMID: 36567670 DOI: 10.1021/acs.jcim.2c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Thereza A Soares
- Department of Chemistry, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.,Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, 3234 Urey Hall, #0340, 9500 Gilman Drive, La Jolla, 92093-0340 San Diego, California, United States
| |
Collapse
|