1
|
Thirunavukarasu A, Szleper K, Tanriver G, Marchlewski I, Mitusinska K, Gora A, Brezovsky J. Water Migration through Enzyme Tunnels Is Sensitive to the Choice of Explicit Water Model. J Chem Inf Model 2025; 65:326-337. [PMID: 39680044 PMCID: PMC11733929 DOI: 10.1021/acs.jcim.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
The utilization of tunnels and water transport within enzymes is crucial for their catalytic function as water molecules can stabilize bound substrates and help with unbinding processes of products and inhibitors. Since the choice of water models for molecular dynamics simulations was shown to determine the accuracy of various calculated properties of the bulk solvent and solvated proteins, we have investigated if and to what extent water transport through the enzyme tunnels depends on the selection of the water model. Here, we focused on simulating enzymes with various well-defined tunnel geometries. In a systematic investigation using haloalkane dehalogenase as a model system, we focused on the well-established TIP3P, OPC, and TIP4P-Ew water models to explore their impact on the use of tunnels for water molecule transport. The TIP3P water model showed significantly faster migration, resulting in the transport of approximately 2.5 times more water molecules compared to that of the OPC and 1.7 times greater than that of the TIP4P-Ew. Finally, the transport was 1.4-fold more pronounced in TIP4P-Ew than in OPC. The increase in migration of TIP3P water molecules was mainly due to faster transit times through dehalogenase tunnels. We observed similar behavior in two different enzymes with buried active sites and different tunnel network topologies, i.e., alditol oxidase and cytochrome P450, indicating that our findings are likely not restricted to a particular enzyme family. Overall, this study showcases the critical importance of water models in comprehending the use of enzyme tunnels for small molecule transport. Given the significant role of water availability in various stages of the catalytic cycle and the solvation of substrates, products, and drugs, choosing an appropriate water model may be crucial for accurate simulations of complex enzymatic reactions, rational enzyme design, and predicting drug residence times.
Collapse
Affiliation(s)
- Aravind
Selvaram Thirunavukarasu
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- International
Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Katarzyna Szleper
- Tunneling
Group, Biotechnology Centre, Silesian University
of Technology, 44-100 Gliwice, Poland
| | - Gamze Tanriver
- Tunneling
Group, Biotechnology Centre, Silesian University
of Technology, 44-100 Gliwice, Poland
| | - Igor Marchlewski
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Karolina Mitusinska
- Tunneling
Group, Biotechnology Centre, Silesian University
of Technology, 44-100 Gliwice, Poland
| | - Artur Gora
- Tunneling
Group, Biotechnology Centre, Silesian University
of Technology, 44-100 Gliwice, Poland
| | - Jan Brezovsky
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- International
Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
2
|
Mandal N, Surpeta B, Brezovsky J. Reinforcing Tunnel Network Exploration in Proteins Using Gaussian Accelerated Molecular Dynamics. J Chem Inf Model 2024; 64:6623-6635. [PMID: 39143923 DOI: 10.1021/acs.jcim.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tunnels are structural conduits in biomolecules responsible for transporting chemical compounds and solvent molecules from the active site. They have been shown to be present in a wide variety of enzymes across all functional and structural classes. However, the study of such pathways is experimentally challenging, because they are typically transient. Computational methods, such as molecular dynamics (MD) simulations, have been successfully proposed to explore tunnels. Conventional MD (cMD) provides structural details to characterize tunnels but suffers from sampling limitations to capture rare tunnel openings on longer time scales. Therefore, in this study, we explored the potential of Gaussian accelerated MD (GaMD) simulations to improve the exploration of complex tunnel networks in enzymes. We used the haloalkane dehalogenase LinB and its two variants with engineered transport pathways, which are not only well-known for their application potential but have also been extensively studied experimentally and computationally regarding their tunnel networks and their importance in multistep catalytic reactions. Our study demonstrates that GaMD efficiently improves tunnel sampling and allows the identification of all known tunnels for LinB and its two mutants. Furthermore, the improved sampling provided insight into a previously unknown transient side tunnel (ST). The extensive conformational landscape explored by GaMD simulations allowed us to investigate in detail the mechanism of ST opening. We determined variant-specific dynamic properties of ST opening, which were previously inaccessible due to limited sampling of cMD. Our comprehensive analysis supports multiple indicators of the functional relevance of the ST, emphasizing its potential significance beyond structural considerations. In conclusion, our research proves that the GaMD method can overcome the sampling limitations of cMD for the effective study of tunnels in enzymes, providing further means for identifying rare tunnels in enzymes with the potential for drug development, precision medicine, and rational protein engineering.
Collapse
Affiliation(s)
- Nishita Mandal
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61-614, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, Warsaw 02-109, Poland
| | - Bartlomiej Surpeta
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61-614, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, Warsaw 02-109, Poland
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61-614, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, Warsaw 02-109, Poland
| |
Collapse
|
3
|
Sequeiros-Borja C, Surpeta B, Thirunavukarasu AS, Dongmo Foumthuim CJ, Marchlewski I, Brezovsky J. Water will Find Its Way: Transport through Narrow Tunnels in Hydrolases. J Chem Inf Model 2024; 64:6014-6025. [PMID: 38669675 PMCID: PMC11323245 DOI: 10.1021/acs.jcim.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
An aqueous environment is vital for life as we know it, and water is essential for nearly all biochemical processes at the molecular level. Proteins utilize water molecules in various ways. Consequently, proteins must transport water molecules across their internal network of tunnels to reach the desired action sites, either within them or by functioning as molecular pipes to control cellular osmotic pressure. Despite water playing a crucial role in enzymatic activity and stability, its transport has been largely overlooked, with studies primarily focusing on water transport across membrane proteins. The transport of molecules through a protein's tunnel network is challenging to study experimentally, making molecular dynamics simulations the most popular approach for investigating such events. In this study, we focused on the transport of water molecules across three different α/β-hydrolases: haloalkane dehalogenase, epoxide hydrolase, and lipase. Using a 5 μs adaptive simulation per system, we observed that only a few tunnels were responsible for the majority of water transport in dehalogenase, in contrast to a higher diversity of tunnels in other enzymes. Interestingly, water molecules could traverse narrow tunnels with subangstrom bottlenecks, which is surprising given the commonly accepted water molecule radius of 1.4 Å. Our analysis of the transport events in such narrow tunnels revealed a markedly increased number of hydrogen bonds formed between the water molecules and protein, likely compensating for the steric penalty of the process. Overall, these commonly disregarded narrow tunnels accounted for ∼20% of the total water transport observed, emphasizing the need to surpass the standard geometrical limits on the functional tunnels to properly account for the relevant transport processes. Finally, we demonstrated how the obtained insights could be applied to explain the differences in a mutant of the human soluble epoxide hydrolase associated with a higher incidence of ischemic stroke.
Collapse
Affiliation(s)
- Carlos Sequeiros-Borja
- International
Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań 61-614, Poland
| | - Bartlomiej Surpeta
- International
Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań 61-614, Poland
| | - Aravind Selvaram Thirunavukarasu
- International
Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań 61-614, Poland
| | | | - Igor Marchlewski
- International
Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań 61-614, Poland
| | - Jan Brezovsky
- International
Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań 61-614, Poland
| |
Collapse
|
4
|
Cournia Z, Soares TA, Wahab HA, Amaro RE. Celebrating Diversity, Equity, Inclusion, and Respect in Computational and Theoretical Chemistry. J Chem Inf Model 2022; 62:6287-6291. [PMID: 36567670 DOI: 10.1021/acs.jcim.2c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Thereza A Soares
- Department of Chemistry, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.,Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, 3234 Urey Hall, #0340, 9500 Gilman Drive, La Jolla, 92093-0340 San Diego, California, United States
| |
Collapse
|