1
|
Sarvepalli S, Vadarevu S. Role of artificial intelligence in cancer drug discovery and development. Cancer Lett 2025; 627:217821. [PMID: 40414522 DOI: 10.1016/j.canlet.2025.217821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/17/2025] [Accepted: 05/23/2025] [Indexed: 05/27/2025]
Abstract
The role of artificial intelligence (AI) in cancer drug discovery and development has garnered significant attention due to its potential to transform the traditionally time-consuming and expensive processes involved in bringing new therapies to market. AI technologies, such as machine learning (ML) and deep learning (DL), enable the efficient analysis of vast datasets, facilitate faster identification of drug targets, optimization of compounds, and prediction of clinical outcomes. This review explores the multifaceted applications of AI across various stages of cancer drug development, from early-stage discovery to clinical trial design, development. In early-stage discovery, AI-driven methods support target identification, virtual screening (VS), and molecular docking, offering precise predictions that streamline the identification of promising compounds. Additionally, AI is instrumental in de novo drug design and lead optimization, where algorithms can generate novel molecular structures and optimize their properties to enhance drug efficacy and safety profiles. Preclinical development benefits from AI's predictive modeling capabilities, particularly in assessing a drug's toxicity through in silico simulations. AI also plays a pivotal role in biomarker discovery, enabling the identification of specific molecular signatures that can inform patient stratification and personalized treatment approaches. In clinical development, AI optimizes trial design by leveraging real-world data (RWD), improving patient selection, and reducing the time required to bring new drugs to market. Despite its transformative potential, challenges remain, including issues related to data quality, model interpretability, and regulatory hurdles. Addressing these limitations is critical for fully realizing AI's potential in cancer drug discovery and development. As AI continues to evolve, its integration with other technologies, such as genomics and clustered regularly interspaced short palindromic repeats (CRISPR), holds promise for advancing personalized cancer therapies. This review provides a comprehensive overview of AI's impact on the cancer drug discovery and development and highlights future directions for this rapidly evolving field.
Collapse
Affiliation(s)
- Sruthi Sarvepalli
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | | |
Collapse
|
2
|
Xia R, Li W, Cheng Y, Xie L, Xu X. Molecular surfaces modeling: Advancements in deep learning for molecular interactions and predictions. Biochem Biophys Res Commun 2025; 763:151799. [PMID: 40239539 DOI: 10.1016/j.bbrc.2025.151799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Molecular surface analysis can provide a high-dimensional, rich representation of molecular properties and interactions, which is crucial for enabling powerful predictive modeling and rational molecular design across diverse scientific and technological domains. With remarkable successes achieved by artificial intelligence (AI) in different fields such as computer vision and natural language processing, there is a growing imperative to harness AI's potential in accelerating molecular discovery and innovation. The integration of AI techniques with molecular surface analysis has opened up new frontiers, allowing researchers to uncover hidden patterns, relationships, and design principles that were previously elusive. By leveraging the complementary strengths of molecular surface representations and advanced AI algorithms, scientists can now explore chemical space more efficiently, optimize molecular properties with greater precision, and drive transformative advancements in areas like drug development, materials engineering, and catalysis. In this review, we aim to provide an overview of recent advancements in the field of molecular surface analysis and its integration with AI techniques. These AI-driven approaches have led to significant advancements in various downstream tasks, including interface site prediction, protein-protein interaction prediction, surface-centric molecular generation and design.
Collapse
Affiliation(s)
- Renjie Xia
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Wei Li
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yi Cheng
- College of Engineering, Lishui University, Lishui, 323000, China
| | - Liangxu Xie
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213001, China.
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213001, China.
| |
Collapse
|
3
|
Zhang H, Xiong D, Liu X, Lv J. MolEM: a unified generative framework for molecular graphs and sequential orders. Brief Bioinform 2025; 26:bbaf094. [PMID: 40163755 PMCID: PMC11957264 DOI: 10.1093/bib/bbaf094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 04/02/2025] Open
Abstract
Structure-based drug design aims to generate molecules that fill the cavity of the protein pocket with a high binding affinity. Many contemporary studies employ sequential generative models. Their standard training method is to sequentialize molecular graphs into ordered sequences and then maximize the likelihood of the resulting sequences. However, the exact likelihood is computationally intractable, which involves a sum over all possible sequential orders. Molecular graphs lack an inherent order and the number of orders is factorial in the graph size. To avoid the intractable full space of factorially-many orders, existing works pre-define a fixed node ordering scheme such as depth-first search to sequentialize the 3D molecular graphs. In these cases, the training objectives are loose lower bounds of the exact likelihoods which are suboptimal for generation. To address the challenges, we propose a unified generative framework named MolEM to learn the 3D molecular graphs and corresponding sequential orders jointly. We derive a tight lower bound of the likelihood and maximize it via variational expectation-maximization algorithm, opening a new line of research in learning-based ordering schemes for 3D molecular graph generation. Besides, we first incorporate the molecular docking method QuickVina 2 to manipulate the binding poses, leading to accurate and flexible ligand conformations. Experimental results demonstrate that MolEM significantly outperforms baseline models in generating molecules with high binding affinities and realistic structures. Our approach efficiently approximates the true marginal graph likelihood and identifies reasonable orderings for 3D molecular graphs, aligning well with relevant chemical priors.
Collapse
Affiliation(s)
- Hanwen Zhang
- College of Computer Science, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
- Engineering Research Center of Machine Learning and Industry Intelligence, Ministry of Education, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Deng Xiong
- Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, United States
| | - Xianggen Liu
- College of Computer Science, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
- Engineering Research Center of Machine Learning and Industry Intelligence, Ministry of Education, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jiancheng Lv
- College of Computer Science, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
- Engineering Research Center of Machine Learning and Industry Intelligence, Ministry of Education, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
4
|
Garg P, Singhal G, Kulkarni P, Horne D, Salgia R, Singhal SS. Artificial Intelligence-Driven Computational Approaches in the Development of Anticancer Drugs. Cancers (Basel) 2024; 16:3884. [PMID: 39594838 PMCID: PMC11593155 DOI: 10.3390/cancers16223884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The integration of AI has revolutionized cancer drug development, transforming the landscape of drug discovery through sophisticated computational techniques. AI-powered models and algorithms have enhanced computer-aided drug design (CADD), offering unprecedented precision in identifying potential anticancer compounds. Traditionally, cancer drug design has been a complex, resource-intensive process, but AI introduces new opportunities to accelerate discovery, reduce costs, and optimize efficiency. This manuscript delves into the transformative applications of AI-driven methodologies in predicting and developing anticancer drugs, critically evaluating their potential to reshape the future of cancer therapeutics while addressing their challenges and limitations.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Gargi Singhal
- Department of Medical Sciences, S.N. Medical College, Agra 282002, Uttar Pradesh, India
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Aldossary A, Campos-Gonzalez-Angulo JA, Pablo-García S, Leong SX, Rajaonson EM, Thiede L, Tom G, Wang A, Avagliano D, Aspuru-Guzik A. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402369. [PMID: 38794859 DOI: 10.1002/adma.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Computational chemistry is an indispensable tool for understanding molecules and predicting chemical properties. However, traditional computational methods face significant challenges due to the difficulty of solving the Schrödinger equations and the increasing computational cost with the size of the molecular system. In response, there has been a surge of interest in leveraging artificial intelligence (AI) and machine learning (ML) techniques to in silico experiments. Integrating AI and ML into computational chemistry increases the scalability and speed of the exploration of chemical space. However, challenges remain, particularly regarding the reproducibility and transferability of ML models. This review highlights the evolution of ML in learning from, complementing, or replacing traditional computational chemistry for energy and property predictions. Starting from models trained entirely on numerical data, a journey set forth toward the ideal model incorporating or learning the physical laws of quantum mechanics. This paper also reviews existing computational methods and ML models and their intertwining, outlines a roadmap for future research, and identifies areas for improvement and innovation. Ultimately, the goal is to develop AI architectures capable of predicting accurate and transferable solutions to the Schrödinger equation, thereby revolutionizing in silico experiments within chemistry and materials science.
Collapse
Affiliation(s)
- Abdulrahman Aldossary
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | | | - Sergio Pablo-García
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
| | - Shi Xuan Leong
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Ella Miray Rajaonson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Luca Thiede
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Gary Tom
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Andrew Wang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Davide Avagliano
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (iCLeHS UMR 8060), Paris, F-75005, France
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
- Department of Materials Science & Engineering, University of Toronto, 184 College St., Toronto, ON, M5S 3E4, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 66118 University Ave., Toronto, M5G 1M1, Canada
- Acceleration Consortium, 80 St George St, Toronto, M5S 3H6, Canada
| |
Collapse
|
6
|
Brocidiacono M, Francoeur P, Aggarwal R, Popov KI, Koes DR, Tropsha A. BigBind: Learning from Nonstructural Data for Structure-Based Virtual Screening. J Chem Inf Model 2024; 64:2488-2495. [PMID: 38113513 DOI: 10.1021/acs.jcim.3c01211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Deep learning methods that predict protein-ligand binding have recently been used for structure-based virtual screening. Many such models have been trained using protein-ligand complexes with known crystal structures and activities from the PDBBind data set. However, because PDBbind only includes 20K complexes, models typically fail to generalize to new targets, and model performance is on par with models trained with only ligand information. Conversely, the ChEMBL database contains a wealth of chemical activity information but includes no information about binding poses. We introduce BigBind, a data set that maps ChEMBL activity data to proteins from the CrossDocked data set. BigBind comprises 583 K ligand activities and includes 3D structures of the protein binding pockets. Additionally, we augmented the data by adding an equal number of putative inactives for each target. Using this data, we developed Banana (basic neural network for binding affinity), a neural network-based model to classify active from inactive compounds, defined by a 10 μM cutoff. Our model achieved an AUC of 0.72 on BigBind's test set, while a ligand-only model achieved an AUC of 0.59. Furthermore, Banana achieved competitive performance on the LIT-PCBA benchmark (median EF1% 1.81) while running 16,000 times faster than molecular docking with Gnina. We suggest that Banana, as well as other models trained on this data set, will significantly improve the outcomes of prospective virtual screening tasks.
Collapse
Affiliation(s)
- Michael Brocidiacono
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paul Francoeur
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Rishal Aggarwal
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Konstantin I Popov
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David Ryan Koes
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Tropsha
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Wang L, Song Y, Wang H, Zhang X, Wang M, He J, Li S, Zhang L, Li K, Cao L. Advances of Artificial Intelligence in Anti-Cancer Drug Design: A Review of the Past Decade. Pharmaceuticals (Basel) 2023; 16:253. [PMID: 37259400 PMCID: PMC9963982 DOI: 10.3390/ph16020253] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 10/13/2023] Open
Abstract
Anti-cancer drug design has been acknowledged as a complicated, expensive, time-consuming, and challenging task. How to reduce the research costs and speed up the development process of anti-cancer drug designs has become a challenging and urgent question for the pharmaceutical industry. Computer-aided drug design methods have played a major role in the development of cancer treatments for over three decades. Recently, artificial intelligence has emerged as a powerful and promising technology for faster, cheaper, and more effective anti-cancer drug designs. This study is a narrative review that reviews a wide range of applications of artificial intelligence-based methods in anti-cancer drug design. We further clarify the fundamental principles of these methods, along with their advantages and disadvantages. Furthermore, we collate a large number of databases, including the omics database, the epigenomics database, the chemical compound database, and drug databases. Other researchers can consider them and adapt them to their own requirements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kang Li
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Lei Cao
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| |
Collapse
|