1
|
Elsheikh A, Driggers CM, Truong HH, Yang Z, Allen J, Henriksen NM, Walczewska-Szewc K, Shyng SL. AI-based discovery and cryoEM structural elucidation of a K ATP channel pharmacochaperone. eLife 2025; 13:RP103159. [PMID: 40135739 PMCID: PMC11942174 DOI: 10.7554/elife.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
Collapse
Affiliation(s)
- Assmaa Elsheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
- Department of Medical Biochemistry, College of Medicine, Tanta UniversityTantaEgypt
| | - Camden M Driggers
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | | | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - John Allen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | | | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in ToruńToruńPoland
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
2
|
ElSheikh A, Driggers CM, Truong HH, Yang Z, Allen J, Henriksen N, Walczewska-Szewc K, Shyng SL. AI-Based Discovery and CryoEM Structural Elucidation of a K ATP Channel Pharmacochaperone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.05.611490. [PMID: 39282384 PMCID: PMC11398524 DOI: 10.1101/2024.09.05.611490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking impaired CHI is hindered by high-affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet® followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~ 9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medical Biochemistry, College of Medicine, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ha H. Truong
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - John Allen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Niel Henriksen
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Elangeeb ME, Elfaki I, Eleragi AMS, Ahmed EM, Mir R, Alzahrani SM, Bedaiwi RI, Alharbi ZM, Mir MM, Ajmal MR, Tayeb FJ, Barnawi J. Molecular Dynamics Simulation of Kir6.2 Variants Reveals Potential Association with Diabetes Mellitus. Molecules 2024; 29:1904. [PMID: 38675722 PMCID: PMC11054064 DOI: 10.3390/molecules29081904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus (DM) represents a problem for the healthcare system worldwide. DM has very serious complications such as blindness, kidney failure, and cardiovascular disease. In addition to the very bad socioeconomic impacts, it influences patients and their families and communities. The global costs of DM and its complications are huge and expected to rise by the year 2030. DM is caused by genetic and environmental risk factors. Genetic testing will aid in early diagnosis and identification of susceptible individuals or populations using ATP-sensitive potassium (KATP) channels present in different tissues such as the pancreas, myocardium, myocytes, and nervous tissues. The channels respond to different concentrations of blood sugar, stimulation by hormones, or ischemic conditions. In pancreatic cells, they regulate the secretion of insulin and glucagon. Mutations in the KCNJ11 gene that encodes the Kir6.2 protein (a major constituent of KATP channels) were reported to be associated with Type 2 DM, neonatal diabetes mellitus (NDM), and maturity-onset diabetes of the young (MODY). Kir6.2 harbors binding sites for ATP and phosphatidylinositol 4,5-diphosphate (PIP2). The ATP inhibits the KATP channel, while the (PIP2) activates it. A Kir6.2 mutation at tyrosine330 (Y330) was demonstrated to reduce ATP inhibition and predisposes to NDM. In this study, we examined the effect of mutations on the Kir6.2 structure using bioinformatics tools and molecular dynamic simulations (SIFT, PolyPhen, SNAP2, PANTHER, PhD&SNP, SNP&Go, I-Mutant, MuPro, MutPred, ConSurf, HOPE, and GROMACS). Our results indicated that M199R, R201H, R206H, and Y330H mutations influence Kir6.2 structure and function and therefore may cause DM. We conclude that MD simulations are useful techniques to predict the effects of mutations on protein structure. In addition, the M199R, R201H, R206H, and Y330H variant in the Kir6.2 protein may be associated with DM. These results require further verification in protein-protein interactions, Kir6.2 function, and case-control studies.
Collapse
Affiliation(s)
- Mohamed E. Elangeeb
- Department of Basic Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.M.A.); (M.R.A.)
| | - Ali M. S. Eleragi
- Department of Microbiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Elsadig Mohamed Ahmed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia;
- Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 27711, Sudan
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (R.I.B.); (Z.M.A.); (F.J.T.); (J.B.)
| | - Salem M. Alzahrani
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.M.A.); (M.R.A.)
| | - Ruqaiah I. Bedaiwi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (R.I.B.); (Z.M.A.); (F.J.T.); (J.B.)
| | - Zeyad M. Alharbi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (R.I.B.); (Z.M.A.); (F.J.T.); (J.B.)
| | - Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Mohammad Rehan Ajmal
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.M.A.); (M.R.A.)
| | - Faris Jamal Tayeb
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (R.I.B.); (Z.M.A.); (F.J.T.); (J.B.)
| | - Jameel Barnawi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (R.I.B.); (Z.M.A.); (F.J.T.); (J.B.)
| |
Collapse
|
4
|
Hou T, Chen L. Sulfonylurea receptor 2 (SUR2), intricate sensors for intracellular Mg-nucleotides. Bioessays 2024; 46:e2300151. [PMID: 38227376 DOI: 10.1002/bies.202300151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
SUR2, similar to SUR1, is a regulatory subunit of the ATP-sensitive potassium channel (KATP), which plays a key role in numerous important physiological processes and is implicated in various diseases. Recent structural studies have revealed that, like SUR1, SUR2 can undergo ligand-dependent dynamic conformational changes, transitioning between an inhibitory inward-facing conformation and an activating occluded conformation. In addition, SUR2 possesses a unique inhibitory Regulatory helix (R helix) that is absent in SUR1. The binding of the activating Mg-ADP to NBD2 of SUR2 competes with the inhibitory Mg-ATP, thereby promoting the release of the R helix and initiating the activation process. Moreover, the signal generated by Mg-ADP binding to NBD2 might be directly transmitted to the TMD of SUR2, prior to NBD dimerization. Furthermore, the C-terminal 42 residues (C42) of SUR2 might allosterically regulate the kinetics of Mg-nucleotide binding on NBD2. These distinctive properties render SUR2 intricate sensors for intracellular Mg-nucleotides.
Collapse
Affiliation(s)
- Tianyi Hou
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, Beijing, China
| |
Collapse
|
5
|
Criveanu D, Bergqvist CA, Larhammar D, Walczewska-Szewc K. Identification of a new Kir6 potassium channel and comparison of properties of Kir6 subtypes by structural modelling and molecular dynamics. Int J Biol Macromol 2023; 247:125771. [PMID: 37433419 DOI: 10.1016/j.ijbiomac.2023.125771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
ATP-sensitive potassium ion channels (KATP) are transmembrane proteins that modulate insulin release and muscle contraction. KATP channels are composed of two types of subunit, Kir6 and SUR, which exist in two and three isoforms respectively with different tissue distribution. In this work, we identify a previously undescribed ancestral vertebrate gene encoding a Kir6-related protein that we have named Kir6.3, which may not have a SUR binding partner, unlike the other two Kir6 proteins. Whereas Kir6.3 was lost in amniotes including mammals, it is still present in several early-diverging vertebrate lineages such as frogs, coelacanth, and rayfinned fishes. Molecular dynamics (MD) simulations using homology models of Kir6.1, Kir6.2, and Kir6.3 from the coelacanth Latimeria chalumnae showed that the three proteins exhibit subtle differences in their dynamics. Steered MD simulations of Kir6-SUR pairs suggest that Kir6.3 has a lower binding affinity for the SUR proteins than either Kir6.1 or Kir6.2. As we found no additional SUR gene in the genomes of the species that have Kir6.3, it most likely forms a lone tetramer. These findings invite studies of the tissue distribution of Kir6.3 in relation to the other Kir6 as well as SUR proteins to determine the functional roles of Kir6.3.
Collapse
Affiliation(s)
- Dan Criveanu
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Christina A Bergqvist
- Department of Medical Cell Biology, Science for Life Laboratory, Biomedical Center Box 571, Uppsala University, SE-75123 Uppsala, Sweden
| | - Dan Larhammar
- Department of Medical Cell Biology, Science for Life Laboratory, Biomedical Center Box 571, Uppsala University, SE-75123 Uppsala, Sweden
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland.
| |
Collapse
|