1
|
Jung S, Yoo S. Interpretable prediction of drug-drug interactions via text embedding in biomedical literature. Comput Biol Med 2025; 185:109496. [PMID: 39626457 DOI: 10.1016/j.compbiomed.2024.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Polypharmacy is a promising approach for treating diseases, especially those with complex symptoms. However, it can lead to unexpected drug-drug interactions (DDIs), potentially reducing efficacy and triggering adverse drug reactions (ADRs). Predicting the risk of DDIs is crucial for ensuring safe drug use, particularly by identifying the types of DDIs and the mechanisms involved. Therefore, this study used biomedical literature to proposed hierarchical attention-based deep learning models to predict DDIs and their types. The proposed model consists of two components: drug embedding and DDI prediction. The drug embedding module extracts representation vectors that effectively capture drug properties using sentence and sequence embedding methods. For sentence embedding, a pre-trained biomedical language model is used to map drug-related sentences into vector space. For sequence embedding, sentence embedding vectors are sequentially fed into bidirectional long short-term memory with a hierarchical attention network, enabling the analysis of sentences relevant to DDI prediction while accounting for the order of the sentences. Finally, DDI prediction is performed using a deep neural network based on the sequence embedding vectors of a drug pair. Our model achieved high performances in the accuracy (0.85-0.90), AUROC (0.98-0.99), and AUPR (0.63-0.95) performance across 164 DDI types. Additionally, the proposed model showed improvements in up to 11 % in AUROC, and 8 % in AUPR. Furthermore, model interprets predictions by leveraging attention mechanisms and drug similarity. The results indicated that the model considered various factors beyond similarity to predict DDIs. These findings may help prevent unforeseen medical accidents and reduce healthcare costs by predicting detailed drug interaction types.
Collapse
Affiliation(s)
- Sunwoo Jung
- Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| | - Sunyong Yoo
- Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
2
|
Kang C, Zhang H, Yin Y. A Dual-Modality Complex-Valued Fusion Method for Predicting Side Effects of Drug-Drug Interactions Based on Graph Neural Network. IEEE J Biomed Health Inform 2024; 28:6212-6224. [PMID: 38990748 DOI: 10.1109/jbhi.2024.3422673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Predicting potential side effects of drug-drug interactions (DDIs), which is a major concern in clinical treatment, can increase therapeutic efficacy. In recent studies, how to use the multi-modal drug features is important for DDI prediction. Thus, it remains a challenge to explore an efficient computational method to achieve the feature fusion cross- and intra-modality. In this paper, we propose a dual-modality complex-valued fusion method (DMCF-DDI) for predicting the side effects of DDIs, using the form and properties of complex-vector to enhance the representations of DDIs. Firstly, DMCF-DDI applies two Graph Convolutional Network (GCN) encoders to learn molecular structure and topological features from fingerprint and knowledge graphs, respectively. Secondly, an asymmetric skip connection (ASC) uses distinct semantic-level features to construct the complex-valued drug pair representations (DPRs). Then, the complex-vector multiplication is used as a fusion operator to obtain the fine-grained DPRs. Finally, we calculate the prediction probability of DDIs by Hermitian inner product in the complex space. Compared with other methods, DMCF-DDI achieves superior performance in all situations using a fusion operator with the lowest parameter numbers. For the case study, we select six diseases and common side effects in clinical treatment to verify identification ability of our model. We also prove the advantage of ASC and complex-valued fusion can achieve to align the cross-modal fused positive DPRs through a comprehensive analysis on the phase-modulus distribution histogram of DPRs. In the end, we explain the reason for alignment based on the similarity of features and node neighbors.
Collapse
|
3
|
Zhao D, Huang P, Yu L, He Y. Pharmacokinetics-Pharmacodynamics Modeling for Evaluating Drug-Drug Interactions in Polypharmacy: Development and Challenges. Clin Pharmacokinet 2024; 63:919-944. [PMID: 38888813 DOI: 10.1007/s40262-024-01391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Polypharmacy is commonly employed in clinical settings. The potential risks of drug-drug interactions (DDIs) can compromise efficacy and pose serious health hazards. Integrating pharmacokinetics (PK) and pharmacodynamics (PD) models into DDIs research provides a reliable method for evaluating and optimizing drug regimens. With advancements in our comprehension of both individual drug mechanisms and DDIs, conventional models have begun to evolve towards more detailed and precise directions, especially in terms of the simulation and analysis of physiological mechanisms. Selecting appropriate models is crucial for an accurate assessment of DDIs. This review details the theoretical frameworks and quantitative benchmarks of PK and PD modeling in DDI evaluation, highlighting the establishment of PK/PD modeling against a backdrop of complex DDIs and physiological conditions, and further showcases the potential of quantitative systems pharmacology (QSP) in this field. Furthermore, it explores the current advancements and challenges in DDI evaluation based on models, emphasizing the role of emerging in vitro detection systems, high-throughput screening technologies, and advanced computational resources in improving prediction accuracy.
Collapse
Affiliation(s)
- Di Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
| |
Collapse
|
4
|
Zhang Y, Deng Z, Xu X, Feng Y, Junliang S. Application of Artificial Intelligence in Drug-Drug Interactions Prediction: A Review. J Chem Inf Model 2024; 64:2158-2173. [PMID: 37458400 DOI: 10.1021/acs.jcim.3c00582] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Drug-drug interactions (DDI) are a critical aspect of drug research that can have adverse effects on patients and can lead to serious consequences. Predicting these events accurately can significantly improve clinicians' ability to make better decisions and establish optimal treatment regimens. However, manually detecting these interactions is time-consuming and labor-intensive. Utilizing the advancements in Artificial Intelligence (AI) is essential for achieving accurate forecasts of DDIs. In this review, DDI prediction tasks are classified into three types according to the type of DDI prediction: undirected DDI prediction, DDI events prediction, and Asymmetric DDI prediction. The paper then reviews the progress of AI for each of these three prediction tasks in DDI and provides a summary of the data sets used as well as the representative methods used in these three prediction directions. In this review, we aim to provide a comprehensive overview of drug interaction prediction. The first section introduces commonly used databases and presents an overview of current research advancements and techniques across three domains of DDI. Additionally, we introduce classical machine learning techniques for predicting undirected drug interactions and provide a timeline for the progression of the predicted drug interaction events. At last, we debate the difficulties and prospects of AI approaches at predicting DDI, emphasizing their potential for improving clinical decision-making and patient outcomes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Zengqian Deng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Xiaoyu Xu
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Yinfei Feng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Shang Junliang
- School of Information Science and Engineering, Qufu Normal University, Rizhao, 276800, China
| |
Collapse
|
5
|
Shi Y, He M, Chen J, Han F, Cai Y. SubGE-DDI: A new prediction model for drug-drug interaction established through biomedical texts and drug-pairs knowledge subgraph enhancement. PLoS Comput Biol 2024; 20:e1011989. [PMID: 38626249 PMCID: PMC11051621 DOI: 10.1371/journal.pcbi.1011989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/26/2024] [Accepted: 03/11/2024] [Indexed: 04/18/2024] Open
Abstract
Biomedical texts provide important data for investigating drug-drug interactions (DDIs) in the field of pharmacovigilance. Although researchers have attempted to investigate DDIs from biomedical texts and predict unknown DDIs, the lack of accurate manual annotations significantly hinders the performance of machine learning algorithms. In this study, a new DDI prediction framework, Subgraph Enhance model, was developed for DDI (SubGE-DDI) to improve the performance of machine learning algorithms. This model uses drug pairs knowledge subgraph information to achieve large-scale plain text prediction without many annotations. This model treats DDI prediction as a multi-class classification problem and predicts the specific DDI type for each drug pair (e.g. Mechanism, Effect, Advise, Interact and Negative). The drug pairs knowledge subgraph was derived from a huge drug knowledge graph containing various public datasets, such as DrugBank, TwoSIDES, OffSIDES, DrugCentral, EntrezeGene, SMPDB (The Small Molecule Pathway Database), CTD (The Comparative Toxicogenomics Database) and SIDER. The SubGE-DDI was evaluated from the public dataset (SemEval-2013 Task 9 dataset) and then compared with other state-of-the-art baselines. SubGE-DDI achieves 83.91% micro F1 score and 84.75% macro F1 score in the test dataset, outperforming the other state-of-the-art baselines. These findings show that the proposed drug pairs knowledge subgraph-assisted model can effectively improve the prediction performance of DDIs from biomedical texts.
Collapse
Affiliation(s)
- Yiyang Shi
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingxiu He
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junheng Chen
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fangfang Han
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangzhou, China
| | - Yongming Cai
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangzhou, China
- Guangdong Provincial Traditional Chinese Medicine Precision Medicine Big Data Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
6
|
Gong Y, Ding W, Wang P, Wu Q, Yao X, Yang Q. Evaluating Machine Learning Methods of Analyzing Multiclass Metabolomics. J Chem Inf Model 2023; 63:7628-7641. [PMID: 38079572 DOI: 10.1021/acs.jcim.3c01525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Multiclass metabolomic studies have become popular for revealing the differences in multiple stages of complex diseases, various lifestyles, or the effects of specific treatments. In multiclass metabolomics, there are multiple data manipulation steps for analyzing raw data, which consist of data filtering, the imputation of missing values, data normalization, marker identification, sample separation, classification, and so on. In each step, several to dozens of machine learning methods can be chosen for the given data set, with potentially hundreds or thousands of method combinations in the whole data processing chain. Therefore, a clear understanding of these machine learning methods is helpful for selecting an appropriate method combination for obtaining stable and reliable analytical results of specific data. However, there has rarely been an overall introduction or evaluation of these methods based on multiclass metabolomic data. Herein, detailed descriptions of these machine learning methods in multiple data manipulation steps are reviewed. Moreover, an assessment of these methods was performed using a benchmark data set for multiclass metabolomics. First, 12 imputation methods for imputing missing values were evaluated based on the PSS (Procrustes statistical shape analysis) and NRMSE (normalized root-mean-square error) values. Second, 17 normalization methods for processing multiclass metabolomic data were evaluated by applying the PMAD (pooled median absolute deviation) value. Third, different methods of identifying markers of multiclass metabolomics were evaluated based on the CWrel (relative weighted consistency) value. Fourth, nine classification methods for constructing multiclass models were assessed using the AUC (area under the curve) value. Performance evaluations of machine learning methods are highly recommended to select the most appropriate method combination before performing the final analysis of the given data. Overall, detailed descriptions and evaluation of various machine learning methods are expected to improve analyses of multiclass metabolomic data.
Collapse
Affiliation(s)
- Yaguo Gong
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Wei Ding
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|