1
|
Xu H, Zhang X, Lv Z, Huang F, Zou Y, Wang C, Ding F, Sun Y. Computational exploration of the self-aggregation mechanisms of phenol-soluble modulins β1 and β2 in Staphylococcus aureus biofilms. Colloids Surf B Biointerfaces 2025; 248:114498. [PMID: 39778221 DOI: 10.1016/j.colsurfb.2025.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations. Our findings revealed that both peptides primarily adopt helical structures as monomers but shift to β-sheets upon dimerization. Monomeric state, PSM-β1 exhibited frequent transitions between helical and β-sheet forms, while PSM-β2 largely retained a helical structure. Upon dimerization, both peptides showed pronounced β-sheet formation around conserved C-terminal residues 21-44. Residues 21-33, largely unstructured as monomers, demonstrated strong tendencies for β-sheet formation and intermolecular interactions, underscoring their central role in the self-assembly of both peptides. Additionally, the PSM-β1 N-terminus formed β-sheets only when interacting with the C-terminus, whereas the PSM-β2 N-terminus remained helical and uninvolved in β-sheet formation. These distinct aggregation behaviors likely contribute to biofilm dynamics, with C-terminal regions facilitating biofilm formation and N-terminal regions influencing stability. Targeting residues 21-33 in PSM-β1 and PSM-β2 offers a promising therapeutic approach for disrupting biofilm integrity. This study advances our understanding of PSM-β1 and PSM-β2 self-assembly and presents new targets for drug design against biofilm-associated diseases.
Collapse
Affiliation(s)
- Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zhongyue Lv
- Department of Neurology, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo 315211, China
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Chuang Wang
- School of Basic Medical Science, Health Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
2
|
Huang F, Fan X, Xu H, Lv Z, Zou Y, Lian J, Ding F, Sun Y. Computational insights into the aggregation mechanism of human calcitonin. Int J Biol Macromol 2025; 294:139520. [PMID: 39761900 DOI: 10.1016/j.ijbiomac.2025.139520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Human calcitonin (hCT) is a peptide hormone that regulates calcium homeostasis, but its abnormal aggregation can disrupt physiological functions and increase the risk of medullary thyroid carcinoma. To elucidate the mechanisms underlying hCT aggregation, we investigated the self-assembly dynamics of hCT segments (hCT1-14, hCT15-25, and hCT26-32) and the folding and dimerization of full-length hCT1-32 through microsecond atomistic discrete molecular dynamics (DMD) simulations. Our results revealed that hCT1-14 and hCT26-32 predominantly existed as isolated monomers with transient small-sized oligomers, indicating weak aggregation tendencies. In contrast, hCT15-25 exhibited robust aggregation capability, forming stable β-sheet aggregates independently. Full-length hCT1-32 monomers displayed dynamic helical structures, with dimerization decreasing helix content and enhancing β-sheet formation. The transition to β-sheets in full-length hCT1-32 correlated with the loss of helical structure in the hCT15-25 region. Conformations with high helical content in hCT15-25 corresponded to significantly reduced β-sheet structures across the peptide, underscoring the importance of helical stability in preventing β-sheet conversion. Thus, the development of amyloid-resistant hCT analogues should focus on enhancing helical stability in this crucial region. Overall, our study not only elucidates the aggregation mechanism of hCT but also identifies a critical target for designing drug inhibitors to prevent hCT aggregation.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo 315211, China
| | - Xinjie Fan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zhongyue Lv
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo 315211, China.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
3
|
Huang F, Yan J, Zhang X, Xu H, Lian J, Yang X, Wang C, Ding F, Sun Y. Computational insights into the aggregation mechanism and amyloidogenic core of aortic amyloid medin polypeptide. Colloids Surf B Biointerfaces 2024; 244:114192. [PMID: 39226847 PMCID: PMC11588409 DOI: 10.1016/j.colsurfb.2024.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Medin amyloid, prevalent in the vessel walls of 97 % of individuals over 50, contributes to arterial stiffening and cerebrovascular dysfunction, yet our understanding of its aggregation mechanism remains limited. Dividing the full-length 50-amino-acid medin peptide into five 10-residue segments, we conducted individual investigations on each segment's self-assembly dynamics via microsecond-timescale atomistic discrete molecular dynamics (DMD) simulations. Our findings showed that medin1-10 and medin11-20 segments predominantly existed as isolated unstructured monomers, unable to form stable oligomers. Medin31-40 exhibited moderate aggregation, forming dynamic β-sheet oligomers with frequent association and dissociation. Conversely, medin21-30 and medin41-50 segments demonstrated significant self-assembly capability, readily forming stable β-sheet-rich oligomers. Residue pairwise contact frequency analysis highlighted the critical roles of residues 22-26 and 43-49 in driving the self-assembly of medin21-30 and medin41-50, acting as the β-sheet core and facilitating β-strand formation in other regions within medin monomers, expecting to extend to oligomers and fibrils. Regions containing residues 22-26 and 43-49, with substantial self-assembly abilities and assistance in β-sheet formation, represent crucial targets for amyloid inhibitor drug design against aortic medial amyloidosis (AMA). In summary, our study not only offers deep insights into the mechanism of medin amyloid formation but also provides crucial theoretical and practical guidance for future treatments of AMA.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Xi Yang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Chuang Wang
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
4
|
Huang F, Yan J, Xu H, Wang Y, Zhang X, Zou Y, Lian J, Ding F, Sun Y. Exploring the Impact of Physiological C-Terminal Truncation on α-Synuclein Conformations to Unveil Mechanisms Regulating Pathological Aggregation. J Chem Inf Model 2024; 64:8616-8627. [PMID: 39504036 PMCID: PMC11588551 DOI: 10.1021/acs.jcim.4c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Emerging evidence suggests that physiological C-terminal truncation of α-synuclein (αS) plays a critical role in regulating liquid-liquid phase separation and promoting amyloid aggregation, processes implicated in neurodegenerative diseases such as Parkinson's disease (PD). However, the molecular mechanisms through which C-terminal truncation influences αS conformation and modulates its aggregation remain poorly understood. In this study, we investigated the impact of C-terminal truncation on αS conformational dynamics by comparing full-length αS1-140 with truncated αS1-103 monomers using atomistic discrete molecular dynamics simulations. Our findings revealed that both αS1-140 and αS1-103 primarily adopted helical conformations around residues 7-32, while residues 36-95, located in the second half of the N-terminal and NAC domains, predominantly formed a dynamic β-sheet core. The C-terminus of αS1-140 was largely unstructured and dynamically wrapped around the β-sheet core. While residues 1-95 exhibited similar secondary structure propensities in both αS1-140 and αS1-103, the dynamic capping by the C-terminus in αS1-140 slightly enhanced β-sheet formation around residues 36-95. In contrast, key aggregation-driving regions (residues 2-9, 36-42, 45-57, and 68-78) were dynamically shielded by the C-terminus in αS1-140, reducing their exposure and potentially preventing interpeptide interactions that drive aggregation. C-terminal truncation, on the other hand, increased the exposed surface area of these aggregation-prone regions, thereby enhancing interpeptide interactions, phase separation, and amyloid aggregation. Overall, our simulations provide valuable insights into the conformational effects of C-terminal truncation on αS and its role in promoting pathological aggregation.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
5
|
Huang G, Song Z, Xu Y, Sun Y, Ding F. Deciphering the Morphological Difference of Amyloid-β Fibrils in Familial and Sporadic Alzheimer's Diseases. J Chem Inf Model 2024; 64:8024-8033. [PMID: 39382320 PMCID: PMC11590496 DOI: 10.1021/acs.jcim.4c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The aggregation of amyloid-β (Aβ) into amyloid fibrils is the major pathological hallmark of Alzheimer's disease (AD). Aβ fibrils can adopt a variety of morphologies, the relative populations of which are recently found to be associated with different AD subtypes such as familial and sporadic AD (fAD and sAD, respectively). The two AD subtypes differ in their ages of onset, AD-related genetic predispositions, and dominant Aβ fibril morphologies. We postulate that these disease subtype-dependent fibril morphology differences can be attributed to the intrinsic fibril properties and interacting molecules in the environment. Using atomistic discrete molecular dynamics simulations, we demonstrated that the fAD-dominant morphology exhibited a lower free-energy barrier for fibril growth but also a lower stability compared with the sAD-dominant fibril morphology, resulting in the time-dependent population change consistent with experimental observations. Additionally, we studied the effect of the Bri2 BRICHOS domain, an endogenous protein that has been reported to inhibit Aβ aggregation by preferential binding to fibrils, as one of the possible environmental factors. The Bri2 BRICHOS domain showed stronger binding to the fAD-dominant fibril than the sAD-dominant fibril in silico, suggesting a more effective suppression of fAD-dominant fibril formation. This result explains the high population of the sAD-dominant fibril morphology in sporadic cases with normal Bri2 functions. Genetic predisposition in fAD, on the other hand, might impair or overwhelm Bri2 functions, leading to a high population of fAD-associated fibril morphology. Together, our computational findings provide a theoretical framework for elucidating the AD subtypes entailed by distinct dominant amyloid fibril morphologies.
Collapse
Affiliation(s)
- Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yun Xu
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
6
|
Dabas A, Goyal B. Structural Reorganization Mechanism of the Aβ 42 Fibril Mediated by N-Substituted Oligopyrrolamide ADH-353. ACS Chem Neurosci 2024; 15:3136-3151. [PMID: 39158263 DOI: 10.1021/acschemneuro.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
The inhibition of amyloid-β (Aβ) fibrillation and clearance of Aβ aggregates have emerged as a potential pharmacological strategy to alleviate Aβ aggregate-induced neurotoxicity in Alzheimer's disease (AD). Maity et al. shortlisted ADH-353 from a small library of positively charged N-substituted oligopyrrolamides for its notable ability to inhibit Aβ fibrillation, disintegrate intracellular cytotoxic Aβ oligomers, and alleviate Aβ-induced cytotoxicity in the SH-SY5Y and N2a cells. However, the molecular mechanism through which ADH-353 interacts with the Aβ42 fibrils, leading to their disruption and subsequent clearance, remains unclear. Thus, a detailed molecular mechanism underlying the disruption of neurotoxic Aβ42 fibrils (PDB ID 2NAO) by ADH-353 has been illuminated in this work using molecular dynamics simulations. Interestingly, conformational snapshots during simulation depicted the shortening and disappearance of β-strands and the emergence of a helix conformation, indicating a loss of the well-organized β-sheet-rich structure of the disease-relevant Aβ42 fibril on the incorporation of ADH-353. ADH-353 binds strongly to the Aβ42 fibril (ΔGbinding= -142.91 ± 1.61 kcal/mol) with a notable contribution from the electrostatic interactions between positively charged N-propylamine side chains of ADH-353 with the glutamic (Glu3, Glu11, and Glu22) and aspartic (Asp7 and Asp23) acid residues of the Aβ42 fibril. This aligns well with heteronuclear single quantum coherence NMR studies, which depict that the binding of ADH-353 with the Aβ peptide is driven by electrostatic and hydrophobic contacts. Furthermore, a noteworthy decrease in the binding affinity of Aβ42 fibril chains on the incorporation of ADH-353 indicates the weakening of interchain interactions leading to the disruption of the double-horseshoe conformation of the Aβ42 fibril. The illumination of key interactions responsible for the destabilization of the Aβ42 fibril by ADH-353 in this work will greatly aid in designing new chemical scaffolds with enhanced efficacy for the clearance of Aβ aggregates in AD.
Collapse
Affiliation(s)
- Arushi Dabas
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Bhupesh Goyal
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| |
Collapse
|
7
|
Gatch AJ, Ding F. TDP-43 Promotes Amyloid-Beta Toxicity by Delaying Fibril Maturation via Direct Molecular Interaction. ACS Chem Neurosci 2024; 15:2936-2953. [PMID: 39073874 PMCID: PMC11323227 DOI: 10.1021/acschemneuro.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Amyloid-β (Aβ) is a peptide that undergoes self-assembly into amyloid fibrils, which compose the hallmark plaques observed in Alzheimer's disease (AD). TAR DNA-binding protein 43 (TDP-43) is a protein with mislocalization and aggregation implicated in amyotrophic lateral sclerosis and other neurodegenerative diseases. Recent work suggests that TDP-43 may interact with Aβ, inhibiting the formation of amyloid fibrils and worsening AD pathology, but the molecular details of their interaction remain unknown. Using all-atom discrete molecular dynamics simulations, we systematically investigated the direct molecular interaction between Aβ and TDP-43. We found that Aβ monomers were able to bind near the flexible nuclear localization sequence of the N-terminal domain (NTD) of TDP-43, adopting β-sheet rich conformations that were promoted by the interaction. Furthermore, Aβ associated with the nucleic acid binding interface of the tandem RNA recognition motifs of TDP-43 via electrostatic interactions. Using the computational peptide array method, we found the strongest C-terminal domain interaction with Aβ to be within the amyloidogenic core region of TDP-43. With experimental evidence suggesting that the NTD is necessary for inhibiting Aβ fibril growth, we also simulated the NTD with an Aβ40 fibril seed. We found that the NTD was able to strongly bind the elongation surface of the fibril seed via extensive hydrogen bonding and could also diffuse along the lateral surface via electrostatic interactions. Our results suggest that TDP-43 binding to the elongation surface, thereby sterically blocking Aβ monomer addition, is responsible for the experimentally observed inhibition of fibril growth. We conclude that TDP-43 may promote Aβ toxicity by stabilizing the oligomeric state and kinetically delaying fibril maturation.
Collapse
Affiliation(s)
- Adam J. Gatch
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
8
|
Fan X, Zhang X, Yan J, Xu H, Zhao W, Ding F, Huang F, Sun Y. Computational Investigation of Coaggregation and Cross-Seeding between Aβ and hIAPP Underpinning the Cross-Talk in Alzheimer's Disease and Type 2 Diabetes. J Chem Inf Model 2024; 64:5303-5316. [PMID: 38921060 PMCID: PMC11339732 DOI: 10.1021/acs.jcim.4c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The coexistence of amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP) in the brain and pancreas is associated with an increased risk of Alzheimer's disease (AD) and type 2 diabetes (T2D) due to their coaggregation and cross-seeding. Despite this, the molecular mechanisms underlying their interaction remain elusive. Here, we systematically investigated the cross-talk between Aβ and hIAPP using atomistic discrete molecular dynamics (DMD) simulations. Our results revealed that the amyloidogenic core regions of both Aβ (Aβ10-21 and Aβ30-41) and hIAPP (hIAPP8-20 and hIAPP22-29), driving their self-aggregation, also exhibited a strong tendency for cross-interaction. This propensity led to the formation of β-sheet-rich heterocomplexes, including potentially toxic β-barrel oligomers. The formation of Aβ and hIAPP heteroaggregates did not impede the recruitment of additional peptides to grow into larger aggregates. Our cross-seeding simulations demonstrated that both Aβ and hIAPP fibrils could mutually act as seeds, assisting each other's monomers in converting into β-sheets at the exposed fibril elongation ends. The amyloidogenic core regions of Aβ and hIAPP, in both oligomeric and fibrillar states, exhibited the ability to recruit isolated peptides, thereby extending the β-sheet edges, with limited sensitivity to the amino acid sequence. These findings suggest that targeting these regions by capping them with amyloid-resistant peptide drugs may hold potential as a therapeutic approach for addressing AD, T2D, and their copathologies.
Collapse
Affiliation(s)
- Xinjie Fan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenhui Zhao
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
9
|
Kaur G, Mankoo OK, Kaur A, Goyal D, Goyal B. Insights into the baicalein-induced destabilization of LS-shaped Aβ 42 protofibrils using computer simulations. Phys Chem Chem Phys 2024; 26:16674-16686. [PMID: 38809059 DOI: 10.1039/d3cp06006c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Amyloid-β (Aβ) peptides aggregate spontaneously into various aggregating species comprising oligomers, protofibrils, and mature fibrils in Alzheimer's disease (AD). Disrupting β-sheet rich neurotoxic smaller soluble Aβ42 oligomers formed at early stages is considered a potent strategy to interfere with AD pathology. Previous experiments have demonstrated the inhibition of the early stages of Aβ aggregation by baicalein; however, the molecular mechanism behind inhibition remains largely unknown. Thus, in this work, molecular dynamics (MD) simulations have been employed to illuminate the molecular mechanism of baicalein-induced destabilization of preformed Aβ42 protofibrils. Baicalein binds to chain A of the Aβ42 protofibril through hydrogen bonds, π-π interactions, and hydrophobic contacts with the central hydrophobic core (CHC) residues of the Aβ42 protofibril. The binding of baicalein to the CHC region of the Aβ42 protofibril resulted in the elongation of the kink angle and disruption of K28-A42 salt bridges, which resulted in the distortion of the protofibril structure. Importantly, the β-sheet content was notably reduced in Aβ42 protofibrils upon incorporation of baicalein with a concomitant increase in the coil content, which is consistent with ThT fluorescence and AFM images depicting disaggregation of pre-existing Aβ42 fibrils on the incorporation of baicalein. Remarkably, the interchain binding affinity in Aβ42 protofibrils was notably reduced in the presence of baicalein leading to distortion in the overall structure, which agrees with the structural stability analyses and conformational snapshots. This work sheds light on the molecular mechanism of baicalein in disrupting the Aβ42 protofibril structure, which will be beneficial to the design of therapeutic candidates against disrupting β-sheet rich neurotoxic Aβ42 oligomers in AD.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Opinder Kaur Mankoo
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India.
| | - Bhupesh Goyal
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala-147004, Punjab, India.
| |
Collapse
|
10
|
Uttarkar A, Rao V, Bhat D, Niranjan V. Disaggregation of amyloid-beta fibrils via natural metabolites using long timescale replica exchange molecular dynamics simulation studies. J Mol Model 2024; 30:61. [PMID: 38321243 DOI: 10.1007/s00894-024-05860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
CONTEXT Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with several presently incurable diseases such as Alzheimer's. disease that is characterized by the accumulation of amyloid fibrils in the brain, which leads to the formation of plaques and the death of brain cells. Disaggregation of amyloid fibrils is considered a promising approach to cure Alzheimer's disease. The mechanism of amyloid fibril formation is complex and not fully understood, making it difficult to develop drugs that can target the process. Diacetonamine and cystathionine are potential lead compounds to induce disaggregation of amyloid fibrils. METHODS In the current research, we have used long timescale molecular simulation studies and replica exchange molecular dynamics (REMD) for 1000 ns (1 μs) to examine the mechanisms by which natural metabolites can disaggregate amyloid-beta fibrils. Molecular docking was carried out using Glide and with prior protein minimization and ligand preparation. We focused on a screening a database of natural metabolites, as potential candidates for disaggregating amyloid fibrils. We used Desmond with OPLS 3e as a force field. MM-GBSA calculations were performed. Blood-brain barrier permeability, SASA, and radius of gyration parameters were calculated.
Collapse
Affiliation(s)
- Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vibha Rao
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Dhrithi Bhat
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India.
| |
Collapse
|
11
|
Huang F, Fan X, Wang Y, Zou Y, Lian J, Wang C, Ding F, Sun Y. Computational insights into the cross-talk between medin and Aβ: implications for age-related vascular risk factors in Alzheimer's disease. Brief Bioinform 2024; 25:bbad526. [PMID: 38271485 PMCID: PMC10810335 DOI: 10.1093/bib/bbad526] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The aggregation of medin forming aortic medial amyloid is linked to arterial wall degeneration and cerebrovascular dysfunction. Elevated levels of arteriolar medin are correlated with an increased presence of vascular amyloid-β (Aβ) aggregates, a hallmark of Alzheimer's disease (AD) and vascular dementia. The cross-interaction between medin and Aβ results in the formation of heterologous fibrils through co-aggregation and cross-seeding processes both in vitro and in vivo. However, a comprehensive molecular understanding of the cross-interaction between medin and Aβ-two intrinsically disordered proteins-is critically lacking. Here, we employed atomistic discrete molecular dynamics simulations to systematically investigate the self-association, co-aggregation and also the phenomenon of cross-seeding between these two proteins. Our results demonstrated that both Aβ and medin were aggregation prone and their mixture tended to form β-sheet-rich hetero-aggregates. The formation of Aβ-medin hetero-aggregates did not hinder Aβ and medin from recruiting additional Aβ and medin peptides to grow into larger β-sheet-rich aggregates. The β-barrel oligomer intermediates observed in the self-aggregations of Aβ and medin were also present during their co-aggregation. In cross-seeding simulations, preformed Aβ fibrils could recruit isolated medin monomers to form elongated β-sheets. Overall, our comprehensive simulations suggested that the cross-interaction between Aβ and medin may contribute to their pathological aggregation, given the inherent amyloidogenic tendencies of both medin and Aβ. Targeting medin, therefore, could offer a novel therapeutic approach to preserving brain function during aging and AD by improving vascular health.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Ningbo 315211, China
| | - Xinjie Fan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Ningbo 315211, China
| | - Chuang Wang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
12
|
Yan J, Wang Y, Fan X, Zou Y, Ding F, Huang F, Sun Y. Deciphering the influence of Y12L and N17H substitutions on the conformation and oligomerization of human calcitonin. SOFT MATTER 2024; 20:693-703. [PMID: 38164981 PMCID: PMC10845004 DOI: 10.1039/d3sm01332d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The abnormal aggregation of human calcitonin (hCT) hormone peptides impairs their physiological function, leading to harmful immune responses and cytotoxicity, which limits their clinical utility. Interestingly, a representative hCT analog incorporating Y12L and N17H substitutions (DM-hCT) has shown reduced aggregation tendencies while maintaining bioactivity. But the molecular mechanism of Y12L and N17H substitutions on the conformational dynamics of hCT remains unclear. Here, we systematically investigated the folding and self-assembly dynamics of hCT and DM-hCT using atomistic discrete molecular dynamics (DMD) simulations. Our findings revealed that hCT monomers predominantly adopted unstructured conformations with dynamic helices. Oligomerization of hCT resulted in the formation of β-sheet-rich aggregates and β-barrel intermediates. The Y12L and N17H substitutions enhanced helical conformations and suppressed β-sheet formation in both monomers and oligomers. These substitutions stabilized the dynamic helices and disrupted aromatic interactions responsible for β-sheet formation at residue 12. Notably, DM-hCT assemblies still exhibited β-sheets in phenylalanine-rich and C-terminal hydrophobic regions, suggesting that future optimizations should focus on these areas. Our simulations provide insights into the molecular mechanisms underlying hCT aggregation and the amyloid-resistant effects of Y12L and N17H substitutions. These findings have valuable implications for the development of clinical hCT analogs.
Collapse
Affiliation(s)
- Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China.
| | - Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Xinjie Fan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China.
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
13
|
Okumura H. Perspective for Molecular Dynamics Simulation Studies of Amyloid-β Aggregates. J Phys Chem B 2023; 127:10931-10940. [PMID: 38109338 DOI: 10.1021/acs.jpcb.3c06051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The cause of Alzheimer's disease is related to aggregates such as oligomers and amyloid fibrils consisting of amyloid-β (Aβ) peptides. Molecular dynamics (MD) simulation studies have been conducted to understand the molecular mechanism of the formation and disruption of Aβ aggregates. In this Perspective, the MD simulation studies are classified into four categories, focusing on the target systems: aggregation of Aβ peptides in bulk solution, Aβ aggregation at the interface, aggregation inhibitor against Aβ peptides, and nonequilibrium MD simulation of Aβ aggregates. MD simulation studies in these categories are first reviewed. Future perspectives in each category are then presented. Finally, the overall perspective is presented on how MD simulations of Aβ aggregates can be utilized for developing Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
14
|
Huang F, Liu Y, Wang Y, Xu J, Lian J, Zou Y, Wang C, Ding F, Sun Y. Co-aggregation of α-synuclein with amyloid-β stabilizes β-sheet-rich oligomers and enhances the formation of β-barrels. Phys Chem Chem Phys 2023; 25:31604-31614. [PMID: 37964757 PMCID: PMC10704842 DOI: 10.1039/d3cp04138g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases with markedly different pathological features of β-amyloid (Aβ) plaques and α-synuclein (αS) Lewy bodies (LBs), respectively. However, clinical overlaps in symptoms and pathologies between AD and PD are commonly observed caused by the cross-interaction between Aβ and αS. To uncover the molecular mechanisms behind their overlapping symptoms and pathologies, we computationally investigated the impact of αS on an Aβ monomer and dimerization using atomistic discrete molecular dynamics simulations (DMD). Our results revealed that αS could directly interact with Aβ monomers and dimers, thus forming β-sheet-rich oligomers, including potentially toxic β-barrel intermediates. The binding hotspot involved the second half of the N-terminal domain and NAC region in αS, along with residues 10-21 and 31-42 in Aβ. In their hetero-complex, the binding hotspot primarily assumed a β-sheet core buried inside, which was dynamically shielded by the highly charged, amyloid-resistant C-terminus of αS. Because the amyloid prion region was the same as the binding hotspot being buried, their fibrillization may be delayed, causing the toxic oligomers to increase. This study sheds light on the intricate relationship between Aβ and αS and provides insights into the overlapping pathology of AD and PD.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Yuying Liu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Chuang Wang
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
15
|
Huang F, Fan X, Wang Y, Wang C, Zou Y, Lian J, Ding F, Sun Y. Unveiling Medin Folding and Dimerization Dynamics and Conformations via Atomistic Discrete Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:6376-6385. [PMID: 37782573 PMCID: PMC10752383 DOI: 10.1021/acs.jcim.3c01267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Medin is a principal component of localized amyloid found in the vasculature of individuals over 50 years old. Its amyloid aggregation has been linked to endothelial dysfunction and vascular inflammation, contributing to the pathogenesis of various vascular diseases. Despite its significance, the structures of the medin monomer, oligomer, and fibril remain elusive, and the dynamic processes of medin aggregation are not fully understood. In this study, we comprehensively investigated the medin folding and dimerization dynamics and conformations using atomistic discrete molecular dynamics simulations. Our simulation results suggested that the folding initiation of the medin involved the formation of β-sheets around medin30-41 and medin42-50, with subsequent capping of other segments to their β-sheet edges. Medin monomers typically consisted of three or four β-strands, along with a dynamic N-terminal helix. Two isolated medin peptides readily aggregated into a β-sheet-rich dimer, displaying a strong aggregation propensity. Dimerization of medin not only enhanced the β-sheet conformations but also led to the formation of β-barrel oligomers. The aggregation tendencies of medin1-18 and medin19-29 were relatively weak. However, the segments of medin30-41 and medin42-50 played a crucial role as they primarily formed a β-sheet core and facilitated medin1-18 and medin19-29 to form intra- and interpeptide β-sheets. The findings highlight the critical role of the medin30-41 and medin42-50 regions in stabilizing the monomer structure and driving the medin amyloid aggregation. These regions could potentially serve as promising targets for designing antiamyloid inhibitors against amyloid aggregation of medin. Additionally, our study provides a full picture of the monomer conformations and dimerization dynamics for medin, which will help better understand the pathology of medin aggregation.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Xinjie Fan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Chuang Wang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|