1
|
Reinhardt JK, Craft D, Weng JK. Toward an integrated omics approach for plant biosynthetic pathway discovery in the age of AI. Trends Biochem Sci 2025; 50:311-321. [PMID: 40000312 DOI: 10.1016/j.tibs.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Elucidating plant biosynthetic pathways is key to advancing a sustainable bioeconomy by enabling access to complex natural products through synthetic biology. Despite progress from genomic, transcriptomic, and metabolomic approaches, much multiomics data remain underutilized. This review highlights state-of-the-art multiomics strategies for discovering plant biosynthetic pathways, addressing challenges in data acquisition and interpretation with emerging computational tools. We propose an integrated workflow combining molecular networking, reaction pair analysis, and gene expression patterns to enhance data utilization. Additionally, artificial intelligence (AI)-driven approaches promise to revolutionize pathway discovery by streamlining data analysis and validation. Integrating multiomics data, chemical insights, and advanced algorithms can accelerate understanding of plant metabolism and bioengineering valuable natural products efficiently.
Collapse
Affiliation(s)
- Jakob K Reinhardt
- Institute for Plant-Human Interface, Northeastern University, Boston, MA 02115; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - David Craft
- Institute for Plant-Human Interface, Northeastern University, Boston, MA 02115; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Jing-Ke Weng
- Institute for Plant-Human Interface, Northeastern University, Boston, MA 02115; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115; Department of Bioengineering, Northeastern University, Boston, MA 02115; Department of Chemical Engineering, Northeastern University, Boston, MA 02115.
| |
Collapse
|
2
|
Chau HYK, Zhang X, Ressom HW. Deep Learning-Based Molecular Fingerprint Prediction for Metabolite Annotation. Metabolites 2025; 15:132. [PMID: 39997757 PMCID: PMC11857613 DOI: 10.3390/metabo15020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Liquid chromatography coupled with mass spectrometry (LC-MS) is a commonly used platform for many metabolomics studies. However, metabolite annotation has been a major bottleneck in these studies in part due to the limited publicly available spectral libraries, which consist of tandem mass spectrometry (MS/MS) data acquired from just a fraction of known compounds. Application of deep learning methods is increasingly reported as an alternative to spectral matching due to their ability to map complex relationships between molecular fingerprints and mass spectrometric measurements. The objectives of this study are to investigate deep learning methods for molecular fingerprint based on MS/MS spectra and to rank putative metabolite IDs according to similarity of their known and predicted molecular fingerprints. Methods: We trained three types of deep learning methods to model the relationships between molecular fingerprints and MS/MS spectra. Prior to training, various data processing steps, including scaling, binning, and filtering, were performed on MS/MS spectra obtained from National Institute of Standards and Technology (NIST), MassBank of North America (MoNA), and Human Metabolome Database (HMDB). Furthermore, selection of the most relevant m/z bins and molecular fingerprints was conducted. The trained deep learning models were evaluated on ranking putative metabolite IDs obtained from a compound database for the challenges in Critical Assessment of Small Molecule Identification (CASMI) 2016, CASMI 2017, and CASMI 2022 benchmark datasets. Results: Feature selection methods effectively reduced redundant molecular and spectral features prior to model training. Deep learning methods trained with the truncated features have shown comparable performances against CSI:FingerID on ranking putative metabolite IDs. Conclusion: The results demonstrate a promising potential of deep learning methods for metabolite annotation.
Collapse
Affiliation(s)
| | | | - Habtom W. Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (H.Y.K.C.); (X.Z.)
| |
Collapse
|
3
|
Hupatz H, Rahu I, Wang WC, Peets P, Palm EH, Kruve A. Critical review on in silico methods for structural annotation of chemicals detected with LC/HRMS non-targeted screening. Anal Bioanal Chem 2025; 417:473-493. [PMID: 39138659 DOI: 10.1007/s00216-024-05471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Non-targeted screening with liquid chromatography coupled to high-resolution mass spectrometry (LC/HRMS) is increasingly leveraging in silico methods, including machine learning, to obtain candidate structures for structural annotation of LC/HRMS features and their further prioritization. Candidate structures are commonly retrieved based on the tandem mass spectral information either from spectral or structural databases; however, the vast majority of the detected LC/HRMS features remain unannotated, constituting what we refer to as a part of the unknown chemical space. Recently, the exploration of this chemical space has become accessible through generative models. Furthermore, the evaluation of the candidate structures benefits from the complementary empirical analytical information such as retention time, collision cross section values, and ionization type. In this critical review, we provide an overview of the current approaches for retrieving and prioritizing candidate structures. These approaches come with their own set of advantages and limitations, as we showcase in the example of structural annotation of ten known and ten unknown LC/HRMS features. We emphasize that these limitations stem from both experimental and computational considerations. Finally, we highlight three key considerations for the future development of in silico methods.
Collapse
Affiliation(s)
- Henrik Hupatz
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden
| | - Ida Rahu
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden.
| | - Wei-Chieh Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden
| | - Pilleriin Peets
- Institute of Biodiversity, Faculty of Biological Science, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Emma H Palm
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Anneli Kruve
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden.
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden.
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 114 18, Stockholm, Sweden.
| |
Collapse
|
4
|
Merz KM, Wei GW, Zhu F. Editorial: Machine Learning in Bio-cheminformatics. J Chem Inf Model 2024; 64:2125-2128. [PMID: 38587006 DOI: 10.1021/acs.jcim.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Affiliation(s)
- Kenneth M Merz
- Department of Chemistry, Michigan State University, Lansing 48824, Michigan, United States
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, Lansing 48824, Michigan, United States
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|