1
|
Lv W, Jia X, Tang B, Ma C, Fang X, Jin X, Niu Z, Han X. In silico modeling of targeted protein degradation. Eur J Med Chem 2025; 289:117432. [PMID: 40015161 DOI: 10.1016/j.ejmech.2025.117432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Targeted protein degradation (TPD) techniques, particularly proteolysis-targeting chimeras (PROTAC) and molecular glue degraders (MGD), have offered novel strategies in drug discovery. With rapid advancement of computer-aided drug design (CADD) and artificial intelligence-driven drug discovery (AIDD) in the biomedical field, a major focus has become how to effectively integrate these technologies into the TPD drug discovery pipeline to accelerate development, shorten timelines, and reduce costs. Currently, the main research directions for applying CADD and AIDD in TPD include: 1) ternary complex modeling; 2) linker generation; 3) strategies to predict degrader targets, activities and ADME/T properties; 4) In silico degrader design and discovery. Models developed in these areas play a crucial role in target identification, drug design, and optimization at various stages of the discovery process. However, the limited size and quality of datasets related to TPD present challenges, leaving room for further improvement in these models. TPD involves the complex ubiquitin-proteasome system, with numerous factors influencing outcomes. Most current models adopt a static perspective to interpret and predict relevant tasks. In the future, it may be necessary to shift toward dynamic approaches that better capture the intricate relationships among these components. Furthermore, incorporating new and diverse chemical spaces will enhance the precision design and application of TPD agents.
Collapse
Affiliation(s)
- Wenxing Lv
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China; Hangzhou Institute of Advanced Technology, Hangzhou, 310000, China.
| | - Xiaojuan Jia
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Bowen Tang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Guangzhou New Block Technology Co., Ltd., Guangzhou, 510000, China.
| | - Chao Ma
- Guangzhou New Block Technology Co., Ltd., Guangzhou, 510000, China.
| | - Xiaopeng Fang
- Hangzhou Institute of Advanced Technology, Hangzhou, 310000, China.
| | - Xurui Jin
- MindRank AI, Hangzhou, 310000, China.
| | - Zhangming Niu
- MindRank AI, Hangzhou, 310000, China; National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, 541004, China.
| |
Collapse
|
2
|
Nassar H, Sarnow A, Celik I, Abdelsalam M, Robaa D, Sippl W. Ternary Complex Modeling, Induced Fit Docking and Molecular Dynamics Simulations as a Successful Approach for the Design of VHL-Mediated PROTACs Targeting the Kinase FLT3. Arch Pharm (Weinheim) 2025; 358:e3126. [PMID: 40223615 PMCID: PMC11995253 DOI: 10.1002/ardp.202500102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Proteolysis targeting chimeras (PROTACs) have proven to be a novel approach for the degradation of disease-causing proteins in drug discovery. One of the E3 ligases for which efficient PROTACs have been described is the Von Hippel-Lindau factor (VHL). However, the development of PROTACs has so far often relied on a minimum of computational tools, so that it is mostly based on a trial-and-error process. Therefore, there is a great need for resource- and time-efficient structure-based or computational approaches to streamline PROTAC design. In this study, we present a combined computational approach that integrates static ternary complex formation, induced-fit docking, and molecular dynamics (MD) simulations. Our methodology was tested using four experimentally derived ternary complex structures of VHL PROTACs, reported for BRD4, SMARCA2, FAK, and WEE1. In addition, we applied the validated approach to model a recently in-house developed FLT3-targeted PROTAC (MA49). The results show that static ternary models generated with a protein-protein docking method implemented in the software MOE have a high predictive power for reproducing the experimental 3D structures. The induced-fit docking of different active PROTACs to their respective models showed the reliability of this model for the development of new VHL-mediated degraders. In particular, the induced-fit docking was sensitive to structural changes in the PROTACs, as evidenced by the failed binding modes of the PROTAC negative controls. Furthermore, MD simulations confirmed the stability of the generated complexes and emphasized the importance of dynamic studies for understanding the relationship between PROTAC structure and function.
Collapse
Affiliation(s)
- Husam Nassar
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Anne‐Christin Sarnow
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Ismail Celik
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
- Department of Pharmaceutical Chemistry, Faculty of PharmacyErciyes UniversityKayseriTurkey
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAlexandria UniversityAlexandriaEgypt
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
3
|
Wu KY, Hung TI, Chang CEA. PROTAC-induced protein structural dynamics in targeted protein degradation. eLife 2025; 13:RP101127. [PMID: 40014381 PMCID: PMC11867615 DOI: 10.7554/elife.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.
Collapse
Affiliation(s)
- Kingsley Y Wu
- Department of Chemistry, University of California, RiversideRiversideUnited States
| | - Ta I Hung
- Department of Chemistry, University of California, RiversideRiversideUnited States
- Department of Bioengineering, University of CaliforniaRiversideUnited States
| | - Chia-en A Chang
- Department of Chemistry, University of California, RiversideRiversideUnited States
| |
Collapse
|
4
|
Wu KY, Hung TI, Chang CEA. PROTAC-induced Protein Structural Dynamics in Targeted Protein Degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.05.592590. [PMID: 38746111 PMCID: PMC11092786 DOI: 10.1101/2024.05.05.592590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4 BD1 ), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4 BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.
Collapse
|
5
|
Ge J, Hsieh CY, Fang M, Sun H, Hou T. Development of PROTACs using computational approaches. Trends Pharmacol Sci 2024; 45:1162-1174. [PMID: 39567313 DOI: 10.1016/j.tips.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) are drugs designed to degrade target proteins via the ubiquitin-proteasome system. With the application of computational biology/chemistry technique in drug design, numerous computer-aided drug design and artificial intelligence (AI)-driven drug design (CADD/AIDD) methods have recently emerged to facilitate the development of PROTAC drugs. We systematically review the role of in silico tools in PROTAC drug design, emphasizing how computational software can model PROTAC action and structure, predict activity, and assist in molecule design. We also discuss current challenges in the rational design of PROTACs from an in silico perspective, such as deviations from small-molecule druggability and the limited availability of training data. We provide an overview of recent discoveries and emerging research in this field, and discuss their potential impact on PROTAC design strategies.
Collapse
Affiliation(s)
- Jingxuan Ge
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; CarbonSilicon AI Technology Company Ltd, Hangzhou 310018, Zhejiang, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Meijing Fang
- Polytechnic Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Polytechnic Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
6
|
Shaik S, Kumar Reddy Gayam P, Chaudhary M, Singh G, Pai A. Advances in designing ternary complexes: Integrating in-silico and biochemical methods for PROTAC optimisation in target protein degradation. Bioorg Chem 2024; 153:107868. [PMID: 39374557 DOI: 10.1016/j.bioorg.2024.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Target protein degradation (TPD) is an emerging approach to mitigate disease-causing proteins. TPD contains several strategies, and one of the strategies that gained immersive importance in recent times is Proteolysis Targeting Chimeras (PROTACs); the PROTACs recruit small molecules to induce the poly-ubiquitination of disease-causing protein by hijacking the ubiquitin-proteasome system (UPS) by bringing the E3 ligase and protein of interest (POI) into appropriate proximity. The steps involved in designing and evaluating the PROTACs remain critical in optimising the PROTACs to degrade the POI. It is observed that using in-silico and biochemical methods to study the ternary complexes (TCs) of the POI-PROTAC-E3 ligase is essential to understanding the structural activity, cooperativity, and stability of formed TCs. A better understanding of the above-mentioned leads to an appropriate rationale for designing the PROTACs targeting the disease-causing proteins. In this review, we tried to summarise the approaches used to design the ternary complexes, i.e., in-silico and in-vitro methods, to understand the behaviour of the PROTAC-induced ternary complexes.
Collapse
Affiliation(s)
- Shareef Shaik
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Aravinda Pai
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
7
|
Xu K, Wang Z, Xiang S, Tang R, Deng Q, Ge J, Jiang Z, Yang K, Hou T, Sun H. Characterizing the Cooperative Effect of PROTAC Systems with End-Point Binding Free Energy Calculation. J Chem Inf Model 2024; 64:7666-7678. [PMID: 39361611 DOI: 10.1021/acs.jcim.4c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Proteolytic targeting chimeras (PROTACs), as an emerging type of drug, function by proximity-based modalities that narrow the distance between a target protein and the E3 ubiquitin ligase to facilitate the ubiquitination labeling of the target protein for degradation. Although it is evidenced that the cooperativity of the PROTAC ternary interaction is one of the key factors affecting the degradation rate of a target protein, PROTAC design utilizing this indicator is still challenging because of the complicated/flexible interactions in a target-PROTAC-E3 ternary system. Therefore, developing reliable and practicable computational methods is of great interest for PROTAC design. Hence, in this study, we investigate the feasibility of using the end-point binding free energy calculation method, represented by molecular mechanics/Poisson-Boltzmann (generalized-Born) surface area (MM/PB(GB)SA), for characterizing cooperativity (including the stabilization and hook effects) of the PROTAC systems. The result shows that MM/GBSA is a good predictor in characterizing these effects under a relatively long molecular dynamics adjustment (50-100 ns) and low dielectric constant (εin = 1), with the Pearson correlation coefficient (rp) > 0.5 and 0.6 for the stabilization and hook effect, respectively. This study provides a feasible strategy for characterizing the cooperativity of the PROTAC systems, facilitating the rational design of PROTAC molecules.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Sutong Xiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Rongfan Tang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Qirui Deng
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Jingxuan Ge
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
| | - Zhiliang Jiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Kaimo Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| |
Collapse
|
8
|
Danishuddin, Jamal MS, Song KS, Lee KW, Kim JJ, Park YM. Revolutionizing Drug Targeting Strategies: Integrating Artificial Intelligence and Structure-Based Methods in PROTAC Development. Pharmaceuticals (Basel) 2023; 16:1649. [PMID: 38139776 PMCID: PMC10747325 DOI: 10.3390/ph16121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
PROteolysis TArgeting Chimera (PROTAC) is an emerging technology in chemical biology and drug discovery. This technique facilitates the complete removal of the target proteins that are "undruggable" or challenging to target through chemical molecules via the Ubiquitin-Proteasome System (UPS). PROTACs have been widely explored and outperformed not only in cancer but also in other diseases. During the past few decades, several academic institutes and pharma companies have poured more efforts into PROTAC-related technologies, setting the stage for several major degrader trial readouts in clinical phases. Despite their promising results, the formation of robust ternary orientation, off-target activity, poor permeability, and binding affinity are some of the limitations that hinder their development. Recent advancements in computational technologies have facilitated progress in the development of PROTACs. Researchers have been able to utilize these technologies to explore a wider range of E3 ligases and optimize linkers, thereby gaining a better understanding of the effectiveness and safety of PROTACs in clinical settings. In this review, we briefly explore the computational strategies reported to date for the formation of PROTAC components and discuss the key challenges and opportunities for further research in this area.
Collapse
Affiliation(s)
- Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | - Kyoung-Seob Song
- Department of Medical Science, Kosin University College of Medicine, 194 Wachi-ro, Yeongdo-gu, Busan 49104, Republic of Korea;
| | - Keun-Woo Lee
- Division of Life Science, Department of Bio & Medical Big-Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
- Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju 52650, Republic of Korea
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Yeong-Min Park
- Department of Integrative Biological Sciences and Industry, Sejong University, 209, Neugdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|