1
|
Li R, Hasan MM, Wang D. In Silico Conotoxin Studies: Progress and Prospects. Molecules 2024; 29:6061. [PMID: 39770149 PMCID: PMC11677113 DOI: 10.3390/molecules29246061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Cone snails of the genus Conus have evolved to produce structurally distinct and functionally diverse venom peptides for defensive and predatory purposes. This nature-devised delicacy enlightened drug discovery and for decades, the bioactive cone snail venom peptides, known as conotoxins, have been widely explored for their therapeutic potential, yet we know very little about them. With the augmentation of computational algorithms from the realms of bioinformatics and machine learning, in silico strategies have made substantial contributions to facilitate conotoxin studies although still with certain limitations. In this review, we made a bibliometric analysis of in silico conotoxin studies from 2004 to 2024 and then discussed in silico strategies to not only efficiently classify conotoxin superfamilies but also speed up drug discovery from conotoxins, reveal binding modes of known conotoxin-ion channel interactions at a microscopic level and relate the mechanisms of ion channel modulation to its underlying molecular structure. We summarized the current progress of studies in this field and gave an outlook on prospects.
Collapse
Affiliation(s)
- Ruihan Li
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
| | - Md. Mahadhi Hasan
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Dan Wang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
2
|
Akasiadis C, Ponce‐de‐Leon M, Montagud A, Michelioudakis E, Atsidakou A, Alevizos E, Artikis A, Valencia A, Paliouras G. Parallel model exploration for tumor treatment simulations. Comput Intell 2022. [DOI: 10.1111/coin.12515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charilaos Akasiadis
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | | | - Arnau Montagud
- Life Sciences Department Barcelona Supercomputing Center Barcelona Spain
| | - Evangelos Michelioudakis
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
- Department of Informatics and Telecommunications University of Athens Athens Greece
| | - Alexia Atsidakou
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | - Elias Alevizos
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | - Alexander Artikis
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | - Alfonso Valencia
- Life Sciences Department Barcelona Supercomputing Center Barcelona Spain
| | - Georgios Paliouras
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| |
Collapse
|
3
|
|
4
|
Marquart LA, Turner MW, Warner LR, King MD, Groome JR, McDougal OM. Ribbon α-Conotoxin KTM Exhibits Potent Inhibition of Nicotinic Acetylcholine Receptors. Mar Drugs 2019; 17:E669. [PMID: 31795126 PMCID: PMC6950571 DOI: 10.3390/md17120669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/26/2023] Open
Abstract
KTM is a 16 amino acid peptide with the sequence WCCSYPGCYWSSSKWC. Here, we present the nuclear magnetic resonance (NMR) structure and bioactivity of this rationally designed α-conotoxin (α-CTx) that demonstrates potent inhibition of rat α3β2-nicotinic acetylcholine receptors (rα3β2-nAChRs). Two bioassays were used to test the efficacy of KTM. First, a qualitative PC12 cell-based assay confirmed that KTM acts as a nAChR antagonist. Second, bioactivity evaluation by two-electrode voltage clamp electrophysiology was used to measure the inhibition of rα3β2-nAChRs by KTM (IC50 = 0.19 ± 0.02 nM), and inhibition of the same nAChR isoform by α-CTx MII (IC50 = 0.35 ± 0.8 nM). The three-dimensional structure of KTM was determined by NMR spectroscopy, and the final set of 20 structures derived from 32 distance restraints, four dihedral angle constraints, and two disulfide bond constraints overlapped with a mean global backbone root-mean-square deviation (RMSD) of 1.7 ± 0.5 Å. The structure of KTM did not adopt the disulfide fold of α-CTx MII for which it was designed, but instead adopted a flexible ribbon backbone and disulfide connectivity of C2-C16 and C3-C8 with an estimated 12.5% α-helical content. In contrast, α-CTx MII, which has a native fold of C2-C8 and C3-C16, has an estimated 38.1% α-helical secondary structure. KTM is the first reported instance of a Framework I (CC-C-C) α-CTx with ribbon connectivity to display sub-nanomolar inhibitory potency of rα3β2-nAChR subtypes.
Collapse
Affiliation(s)
- Leanna A. Marquart
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - Matthew W. Turner
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA;
| | - Lisa R. Warner
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - Matthew D. King
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA;
| | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| |
Collapse
|
5
|
Marquart LA, Turner MW, McDougal OM. Qualitative Assay to Detect Dopamine Release by Ligand Action on Nicotinic Acetylcholine Receptors. Toxins (Basel) 2019; 11:toxins11120682. [PMID: 31757080 PMCID: PMC6949981 DOI: 10.3390/toxins11120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
A pheochromocytoma of the rat adrenal medulla derived (a.k.a. PC12) cell-based assay for dopamine measurement by luminescence detection was customized for the qualitative evaluation of agonists and antagonists of nicotinic acetylcholine receptors (nAChRs). The assay mechanism begins with ligand binding to transmembrane nAChRs, altering ion flow into the cell and inducing dopamine release from the cell. Following release, dopamine is oxidized by monoamine oxidase generating hydrogen peroxide that catalyzes a chemiluminescence reaction involving luminol and horseradish peroxidase, thus producing a detectable response. Results are presented for the action of nAChR agonists (acetylcholine, nicotine, and cytisine), and antagonists (α-conotoxins (α-CTxs) MII, ImI, LvIA, and PeIA) that demonstrate a luminescence response correlating to the increase or decrease of dopamine release. A survey of cell growth and treatment conditions, including nerve growth factor, nicotine, ethanol, and temperature, led to optimal assay requirements to achieve maximal signal intensity and consistent response to ligand treatment. It was determined that PC12 cells treated with a combination of nerve growth factor and nicotine, and incubated at 37 °C, provided favorable results for a reduction in luminescence signal upon treatment of cells with α-CTxs. The PC12 assay is intended for use as a fast, efficient, and economic qualitative method to assess the bioactivity of molecules that act on nAChRs, in which testing of ligand-nAChR binding hypotheses and computational predictions can be validated. As a screening method for nAChR bioactivity, lead compounds can be assessed for their likelihood of exhibiting desired bioactivity prior to being subjected to more complex quantitative methods, such as electrophysiology or live animal studies.
Collapse
Affiliation(s)
- Leanna A. Marquart
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA;
| | - Matthew W. Turner
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA;
| | - Owen M. McDougal
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA;
- Correspondence:
| |
Collapse
|
6
|
Mansbach RA, Travers T, McMahon BH, Fair JM, Gnanakaran S. Snails In Silico: A Review of Computational Studies on the Conopeptides. Mar Drugs 2019; 17:E145. [PMID: 30832207 PMCID: PMC6471681 DOI: 10.3390/md17030145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
Marine cone snails are carnivorous gastropods that use peptide toxins called conopeptides both as a defense mechanism and as a means to immobilize and kill their prey. These peptide toxins exhibit a large chemical diversity that enables exquisite specificity and potency for target receptor proteins. This diversity arises in terms of variations both in amino acid sequence and length, and in posttranslational modifications, particularly the formation of multiple disulfide linkages. Most of the functionally characterized conopeptides target ion channels of animal nervous systems, which has led to research on their therapeutic applications. Many facets of the underlying molecular mechanisms responsible for the specificity and virulence of conopeptides, however, remain poorly understood. In this review, we will explore the chemical diversity of conopeptides from a computational perspective. First, we discuss current approaches used for classifying conopeptides. Next, we review different computational strategies that have been applied to understanding and predicting their structure and function, from machine learning techniques for predictive classification to docking studies and molecular dynamics simulations for molecular-level understanding. We then review recent novel computational approaches for rapid high-throughput screening and chemical design of conopeptides for particular applications. We close with an assessment of the state of the field, emphasizing important questions for future lines of inquiry.
Collapse
Affiliation(s)
- Rachael A Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Jeanne M Fair
- Biosecurity and Public Health Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
7
|
Turner MW, Marquart LA, Phillips PD, McDougal OM. Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors. Toxins (Basel) 2019; 11:E113. [PMID: 30781866 PMCID: PMC6409848 DOI: 10.3390/toxins11020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/04/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are found throughout the mammalian body and have been studied extensively because of their implication in a myriad of diseases. α-Conotoxins (α-CTxs) are peptide neurotoxins found in the venom of marine snails of genus Conus. α-CTxs are potent and selective antagonists for a variety of nAChR isoforms. Over the past 40 years, α-CTxs have proven to be valuable molecular probes capable of differentiating between closely related nAChR subtypes and have contributed greatly to understanding the physiological role of nAChRs in the mammalian nervous system. Here, we review the amino acid composition and structure of several α-CTxs that selectively target nAChR isoforms and explore strategies and outcomes for introducing mutations in native α-CTxs to direct selectivity and enhance binding affinity for specific nAChRs. This review will focus on structure-activity relationship studies involving native α-CTxs that have been rationally mutated and molecular interactions that underlie binding between ligand and nAChR isoform.
Collapse
Affiliation(s)
- Matthew W Turner
- Biomolecular Sciences Graduate Programs, Boise State University; Boise, ID 83725, USA.
| | - Leanna A Marquart
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Paul D Phillips
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| |
Collapse
|
8
|
Zheng C, Huang Y, Zhang H, Zha Y, Wang M. [β2-nicotinic acetylcholine receptor promotes development of GABA A receptors in mouse hippocampal CA1 and CA3 pyramidal neurons]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1045-1051. [PMID: 30377105 DOI: 10.12122/j.issn.1673-4254.2018.09.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the role of β2-nicotinic acetylcholine receptor (β2-nAChR) in the development of γ- aminobutyric acid A type receptors (GABAA-Rs) in hippocampal CA1 and CA3 pyramidal neurons of mice. METHODS The hippocampal CA1 and CA3 pyramidal neurons were acutely isolated from β2-nAChR gene knockout (β2-KO group) mice. GABA currents in CA1 and CA3 pyramidal neurons were induced with the selective GABAA-R agonist muscimol and recorded using perforated patch-clamp recording technique. The GABA currents of CA1 and CA3 pyramidal neurons were tested for their equilibrium potentials (EMuss) and kinetic parameters and were compared with the measurements in wild-type mice (WT group). RESULTS The mean EMus of CA1 neurons (n=7) of β2-KO mice (n=4) was -31.7±3.5 mV, showing an obvious depolarizing shift compared with the WT mice (P < 0.05); the mean EMus of CA3 neurons (n=4) was -16.1±4.6 mV, also showing a depolarizing shift (P < 0.01). The difference in the EMuss between CA3 and CA1 neurons in β2-KO mice, but not in WT mice, was significant (P < 0.05). The GABAA-R desensitization was significantly slowed down in both CA1 and CA3 neurons of β2-KO mice, with decay time of 2.2±0.2 s and 3.2±0.1 s, respectively, significantly longer than those in WT mice (1.6±0.1 s and 2.3±0.1 s, respectively; P < 0.05). CONCLUSIONS β2-containing nAChRs may promote the functional maturation of GABAA-R in CA1 and CA3 pyramidal cells in mouse hippocampus.
Collapse
Affiliation(s)
- Chao Zheng
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China
| | - Yan Huang
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China
| | - Huanhuan Zhang
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China
| | - Yingying Zha
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China
| | - Mengya Wang
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
9
|
King MD, Long T, Pfalmer DL, Andersen TL, McDougal OM. SPIDR: small-molecule peptide-influenced drug repurposing. BMC Bioinformatics 2018; 19:138. [PMID: 29661129 PMCID: PMC5902895 DOI: 10.1186/s12859-018-2153-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Background Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are examined for efficacy against diseases divergent than their original application. Repurposing of existing drugs circumvents the time and considerable cost of early stages of drug development, and can be accelerated by using software to screen existing chemical databases to identify suitable drug candidates. Results Small-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was tested using the potent and selective 16-amino acid peptide α-conotoxin MII ligand and the α3β2-nicotinic acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure, which was used to explore the ligand binding domain of the α3β2-nAChR isoform using a library consisting of 640,000 α-conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for α3β2-nAChR were used as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly double that of the native α-conotoxin MII peptide. Conclusions SPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing. Electronic supplementary material The online version of this article (10.1186/s12859-018-2153-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew D King
- Department of Chemistry and Biochemistry, Boise State University, Boise, USA
| | - Thomas Long
- Department of Computer Science, Boise State University, Boise, USA
| | - Daniel L Pfalmer
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, USA
| | | | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, USA.
| |
Collapse
|
10
|
Leffler AE, Kuryatov A, Zebroski HA, Powell SR, Filipenko P, Hussein AK, Gorson J, Heizmann A, Lyskov S, Tsien RW, Poget SF, Nicke A, Lindstrom J, Rudy B, Bonneau R, Holford M. Discovery of peptide ligands through docking and virtual screening at nicotinic acetylcholine receptor homology models. Proc Natl Acad Sci U S A 2017; 114:E8100-E8109. [PMID: 28874590 PMCID: PMC5617267 DOI: 10.1073/pnas.1703952114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Venom peptide toxins such as conotoxins play a critical role in the characterization of nicotinic acetylcholine receptor (nAChR) structure and function and have potential as nervous system therapeutics as well. However, the lack of solved structures of conotoxins bound to nAChRs and the large size of these peptides are barriers to their computational docking and design. We addressed these challenges in the context of the α4β2 nAChR, a widespread ligand-gated ion channel in the brain and a target for nicotine addiction therapy, and the 19-residue conotoxin α-GID that antagonizes it. We developed a docking algorithm, ToxDock, which used ensemble-docking and extensive conformational sampling to dock α-GID and its analogs to an α4β2 nAChR homology model. Experimental testing demonstrated that a virtual screen with ToxDock correctly identified three bioactive α-GID mutants (α-GID[A10V], α-GID[V13I], and α-GID[V13Y]) and one inactive variant (α-GID[A10Q]). Two mutants, α-GID[A10V] and α-GID[V13Y], had substantially reduced potency at the human α7 nAChR relative to α-GID, a desirable feature for α-GID analogs. The general usefulness of the docking algorithm was highlighted by redocking of peptide toxins to two ion channels and a binding protein in which the peptide toxins successfully reverted back to near-native crystallographic poses after being perturbed. Our results demonstrate that ToxDock can overcome two fundamental challenges of docking large toxin peptides to ion channel homology models, as exemplified by the α-GID:α4β2 nAChR complex, and is extendable to other toxin peptides and ion channels. ToxDock is freely available at rosie.rosettacommons.org/tox_dock.
Collapse
Affiliation(s)
- Abba E Leffler
- Neuroscience Graduate Program, Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016
| | - Alexander Kuryatov
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Henry A Zebroski
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065
| | - Susan R Powell
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065
| | - Petr Filipenko
- Department of Chemistry, Belfer Research Center-Hunter College, New York, NY 10021
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY 10024
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Adel K Hussein
- Department of Chemistry, College of Staten Island, Staten Island, NY 10314
- Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016
| | - Juliette Gorson
- Department of Chemistry, Belfer Research Center-Hunter College, New York, NY 10021
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY 10024
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10021
- Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016
| | - Anna Heizmann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany
| | - Sergey Lyskov
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Richard W Tsien
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Sébastien F Poget
- Department of Chemistry, College of Staten Island, Staten Island, NY 10314
- Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Bernardo Rudy
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
- Center for Computational Biology, Simons Foundation, New York, NY 10010
| | - Mandë Holford
- Department of Chemistry, Belfer Research Center-Hunter College, New York, NY 10021;
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY 10024
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10021
- Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016
| |
Collapse
|