1
|
Bano S, Khatoon A, Quareshi U, Ul-Haq Z, Karim A. Pan-genome analysis and drug repurposing strategies for extensively drug-resistant Salmonella Typhi: Subtractive genomics and e-pharmacophore approaches. Int J Biol Macromol 2025; 291:139003. [PMID: 39708886 DOI: 10.1016/j.ijbiomac.2024.139003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
In the current study, we presented the genome sequence and taxonomic classification of the new extensively drug-resistant (XDR) Salmonella enterica serovar Typhi strain JRCGR-ST-AK02. Its genome size was found to be 4,780,534 bp, containing 4864 genes. Taxonomic classification was performed based on the Average Nucleotide Identity (ANI), Genome-to-Genome Distance Calculator (GGDC) and Average Amino Acid Identity (AAI) analysis. Pan-genome analysis revealed 34,4915 core genes, which are predominantly involved in general functions and carbohydrate metabolism. We used a subtractive genomics approach and identified the PocR protein as a drug target. Its 3D structure was built using homology modeling, and an e-pharmacophore hypothesis was created using its binding site. The pharmacophore hypothesis was screened against FDA-approved ligands library and a total of 2018 out 9392 drugs were selected for molecular docking. Cangrelor and Pentagastrin presented docking scores of -9.503 and -9.081 kcal/mol, respectively. The binding dynamics of these promising FDA-approved drugs were further confirmed through 200 ns molecular dynamics simulation, highlighting their stable and strong interactions with the PocR protein. Our study highlights the potential of Cangrelor and Pentagastrin for repurposing against XDR Salmonella Typhi. By identifying these drugs as promising candidates, we pave the way for new treatments for XDR Salmonella Typhi infections.
Collapse
Affiliation(s)
- Sumera Bano
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Ambrina Khatoon
- Department of Molecular Medicine, Ziauddin Medical College, Ziauddin University, Karachi, Pakistan
| | - Urooj Quareshi
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center of Chemical and Biological Science, University of Karachi, 75270-Karachi, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center of Chemical and Biological Science, University of Karachi, 75270-Karachi, Pakistan
| | - Asad Karim
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
2
|
Xu X, Kao WL, Wang A, Lee HJ, Duan R, Holmes H, Gallazzi F, Ji J, Sun H, Heng X, Zou X. In silico screening of protein-binding peptides with an application to developing peptide inhibitors against antibiotic resistance. PNAS NEXUS 2024; 3:pgae541. [PMID: 39660074 PMCID: PMC11630551 DOI: 10.1093/pnasnexus/pgae541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The field of therapeutic peptides is experiencing a surge, fueled by their advantageous features. These include predictable metabolism, enhanced safety profile, high selectivity, and reduced off-target effects compared with small-molecule drugs. Despite progress in addressing limitations associated with peptide drugs, a significant bottleneck remains: the absence of a large-scale in silico screening method for a given protein target structure. Such methods have proven invaluable in accelerating small-molecule drug discovery. The high flexibility of peptide structures and the large diversity of peptide sequences greatly hinder the development of urgently needed computational methods. Here, we report a method called MDockPeP2_VS to address these challenges. It integrates molecular docking with structural conservation between protein folding and protein-peptide binding. Briefly, we discovered that when the interfacial residues are conserved, a sequence fragment derived from a monomeric protein exhibits a high propensity to bind a target protein with a similar conformation. This valuable insight significantly reduces the search space for peptide conformations, resulting in a substantial reduction in computational time and making in silico peptide screening practical. We applied MDockPeP2_VS to develop peptide inhibitors targeting the TEM-1 β-lactamase of Escherichia coli, a key mechanism behind antibiotic resistance in gram-negative bacteria. Among the top 10 peptides selected from in silico screening, TF7 (KTYLAQAAATG) showed significant inhibition of β-lactamase activity with a K i value of 1.37 ± 0.37 µM. This fully automated, large-scale structure-based in silico peptide screening software is available for free download at https://zougrouptoolkit.missouri.edu/mdockpep2_vs/download.html.
Collapse
Affiliation(s)
- Xianjin Xu
- Department of Physics, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
- Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Wei-Ling Kao
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Department of Medicine, University of Missouri, Columbia, MO 65211, USA
- Department of Pharmacology, National Yang Ming Chiao Tung University College of Medicine, Taipei 112304, Taiwan
| | - Allison Wang
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Department of Medicine, University of Missouri, Columbia, MO 65211, USA
- Department of Pharmacology, National Yang Ming Chiao Tung University College of Medicine, Taipei 112304, Taiwan
| | - Hsin-Jou Lee
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Department of Medicine, University of Missouri, Columbia, MO 65211, USA
- Department of Pharmacology, National Yang Ming Chiao Tung University College of Medicine, Taipei 112304, Taiwan
| | - Rui Duan
- Department of Physics, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
- Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Hannah Holmes
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Fabio Gallazzi
- Molecular Interactions Core, University of Missouri, Columbia, MO 65211, USA
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Hongmin Sun
- Department of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Xiaoqin Zou
- Department of Physics, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
- Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Alzamami A, Alturki NA, Khan K, Basharat Z, Mashraqi MM. Screening inhibitors against the Ef-Tu of Fusobacterium nucleatum: a docking, ADMET and PBPK assessment study. Mol Divers 2024; 28:4259-4276. [PMID: 38457020 DOI: 10.1007/s11030-024-10815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/21/2024] [Indexed: 03/09/2024]
Abstract
The oral pathogen Fusobacterium nucleatum has recently been associated with an elevated risk of colorectal cancer (CRC), endometrial metastasis, chemoresistance, inflammation, metastasis, and DNA damage, along with several other diseases. This study aimed to explore the disruption of protein machinery of F. nucleatum via inhibition of elongation factor thermo unstable (Ef-Tu) protein, through natural products. No study on Ef-Tu inhibition by natural products or in Fusobacterium spp. exists till todate. Ef-Tu is an abundant specialized drug target in bacteria that varies from human Ef-Tu. Elfamycins target Ef-Tu and hence, Enacyloxin IIa was used to generate pharmacophore for virtual screening of three natural product libraries, Natural Product Activity and Species Source (NPASS) (n = 30000 molecules), Tibetan medicinal plant database (n = 54 molecules) and African medicinal plant database (n > 6000 molecules). Peptaibol Septocylindrin B (NPC141050), Hirtusneanoside, and ZINC95486259 were prioritized from these libraries as potential therapeutic candidates. ADMET profiling was done for safety assessment, physiological-based pharmacokinetic modeling in human and mouse for getting insight into drug interaction with body tissues and molecular dynamics was used to assess stability of the best hit NPC141050 (Septocylindrin B). Based on the promising results, we propose further in vitro, in vivo and pharmacokinetic testing on the lead Septocylindrin B, for possible translation into therapeutic interventions.
Collapse
Affiliation(s)
- Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Shaqra University, 11961, Al-Quwayiyah, Saudi Arabia
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zarrin Basharat
- Alpha Genomics (Private) Limited, Islamabad, 45710, Pakistan.
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia.
| |
Collapse
|
4
|
Alzain AA, Elbadwi FA, Shoaib TH, Sherif AE, Osman W, Ashour A, Mohamed GA, Ibrahim SRM, Roh EJ, Hassan AHE. Integrating computational methods guided the discovery of phytochemicals as potential Pin1 inhibitors for cancer: pharmacophore modeling, molecular docking, MM-GBSA calculations and molecular dynamics studies. Front Chem 2024; 12:1339891. [PMID: 38318109 PMCID: PMC10839060 DOI: 10.3389/fchem.2024.1339891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Pin1 is a pivotal player in interactions with a diverse array of phosphorylated proteins closely linked to critical processes such as carcinogenesis and tumor suppression. Its axial role in cancer initiation and progression, coupled with its overexpression and activation in various cancers render it a potential candidate for the development of targeted therapeutics. While several known Pin1 inhibitors possess favorable enzymatic profiles, their cellular efficacy often falls short. Consequently, the pursuit of novel Pin1 inhibitors has gained considerable attention in the field of medicinal chemistry. In this study, we employed the Phase tool from Schrödinger to construct a structure-based pharmacophore model. Subsequently, 449,008 natural products (NPs) from the SN3 database underwent screening to identify compounds sharing pharmacophoric features with the native ligand. This resulted in 650 compounds, which then underwent molecular docking and binding free energy calculations. Among them, SN0021307, SN0449787 and SN0079231 showed better docking scores with values of -9.891, -7.579 and -7.097 kcal/mol, respectively than the reference compound (-6.064 kcal/mol). Also, SN0021307, SN0449787 and SN0079231 exhibited lower free binding energies (-57.12, -49.81 and -46.05 kcal/mol, respectively) than the reference ligand (-37.75 kcal/mol). Based on these studies, SN0021307, SN0449787, and SN0079231 showed better binding affinity that the reference compound. Further the validation of these findings, molecular dynamics simulations confirmed the stability of the ligand-receptor complex for 100 ns with RMSD ranging from 0.6 to 1.8 Å. Based on these promising results, these three phytochemicals emerge as promising lead compounds warranting comprehensive biological screening in future investigations. These compounds hold great potential for further exploration regarding their efficacy and safety as Pin1 inhibitors, which could usher in new avenues for combating cancer.
Collapse
Affiliation(s)
- Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Fatima A. Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Tagyedeen H. Shoaib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Asmaa E. Sherif
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Wadah Osman
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Gan JL, Kumar D, Chen C, Taylor BC, Jagger BR, Amaro RE, Lee CT. Benchmarking ensemble docking methods in D3R Grand Challenge 4. J Comput Aided Mol Des 2022; 36:87-99. [PMID: 35199221 PMCID: PMC8907095 DOI: 10.1007/s10822-021-00433-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
The discovery of new drugs is a time consuming and expensive process. Methods such as virtual screening, which can filter out ineffective compounds from drug libraries prior to expensive experimental study, have become popular research topics. As the computational drug discovery community has grown, in order to benchmark the various advances in methodology, organizations such as the Drug Design Data Resource have begun hosting blinded grand challenges seeking to identify the best methods for ligand pose-prediction, ligand affinity ranking, and free energy calculations. Such open challenges offer a unique opportunity for researchers to partner with junior students (e.g., high school and undergraduate) to validate basic yet fundamental hypotheses considered to be uninteresting to domain experts. Here, we, a group of high school-aged students and their mentors, present the results of our participation in Grand Challenge 4 where we predicted ligand affinity rankings for the Cathepsin S protease, an important protein target for autoimmune diseases. To investigate the effect of incorporating receptor dynamics on ligand affinity rankings, we employed the Relaxed Complex Scheme, a molecular docking method paired with molecular dynamics-generated receptor conformations. We found that Cathepsin S is a difficult target for molecular docking and we explore some advanced methods such as distance-restrained docking to try to improve the correlation with experiments. This project has exemplified the capabilities of high school students when supported with a rigorous curriculum, and demonstrates the value of community-driven competitions for beginners in computational drug discovery.
Collapse
Affiliation(s)
- Jessie Low Gan
- San Diego Jewish Academy, San Diego, 92130, CA, USA.,California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dhruv Kumar
- Rancho Bernardo High School, San Diego, CA, 92128, USA.,University of California Berkeley, Berkeley, CA, USA
| | - Cynthia Chen
- California Institute of Technology, Pasadena, CA, 91125, USA.,Canyon Crest Academy, San Diego, CA, 92130, USA
| | - Bryn C Taylor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.,Discovery Sciences, Janssen Research and Development, San Diego, CA, 92121, USA
| | - Benjamin R Jagger
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Li D, Jiang K, Teng D, Wu Z, Li W, Tang Y, Wang R, Liu G. Discovery of New Estrogen-Related Receptor α Agonists via a Combination Strategy Based on Shape Screening and Ensemble Docking. J Chem Inf Model 2022; 62:486-497. [PMID: 35041411 DOI: 10.1021/acs.jcim.1c00662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Estrogen-related receptor α (ERRα), a member of nuclear receptors (NRs), plays a role in the regulation of cellular energy metabolism and is reported to be a novel potential target for type 2 diabetes therapy. To date, only a few agonists of ERRα have been identified to improve insulin sensitivity and decrease blood glucose levels. Herein, the discovery of novel potent agonists of ERRα determined using a combined virtual screening approach is described. Molecular dynamics (MD) simulations were used to obtain structural ensembles that can consider receptor flexibility. Then, an efficient virtual screening strategy with a combination of similarity search and ensemble docking was performed against the Enamine, SPECS, and Drugbank databases to identify potent ERRα agonists. Finally, a total of 66 compounds were purchased for experimental testing. Biological investigation of promising candidates identified seven compounds that have activity against ERRα with EC50 values ranging from 1.11 to 21.70 μM, with novel scaffolds different from known ERRα agonists until now. Additionally, the molecule GX66 showed micromolar inverse activity against ERRα with an IC50 of 0.82 μM. The predicted binding modes showed that these compounds were anchored in ERRα-LBP via interactions with several residues of ERRα. Overall, this study not only identified the novel potent ERRα agonists or an inverse agonist that would be the promising starting point for further exploration but also demonstrated a successful molecular dynamics-guided approach applicable in virtual screening for ERRα agonists.
Collapse
Affiliation(s)
- Dongping Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Kexin Jiang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dan Teng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Chheda PR, Cooling GT, Dean SF, Propp J, Hobbs KF, Spies MA. Decrypting a Cryptic Allosteric Pocket in H. pylori Glutamate Racemase. Commun Chem 2021; 4:172. [PMID: 35673630 PMCID: PMC9169614 DOI: 10.1038/s42004-021-00605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/08/2021] [Indexed: 01/27/2023] Open
Abstract
One of our greatest challenges in drug design is targeting cryptic allosteric pockets in enzyme targets. Drug leads that do bind to these cryptic pockets are often discovered during HTS campaigns, and the mechanisms of action are rarely understood. Nevertheless, it is often the case that the allosteric pocket provides the best option for drug development against a given target. In the current studies we present a successful way forward in rationally exploiting the cryptic allosteric pocket of H. pylori glutamate racemase, an essential enzyme in this pathogen's life cycle. A wide range of computational and experimental methods are employed in a workflow leading to the discovery of a series of natural product allosteric inhibitors which occupy the allosteric pocket of this essential racemase. The confluence of these studies reveals a fascinating source of the allosteric inhibition, which centers on the abolition of essential monomer-monomer coupled motion networks.
Collapse
Affiliation(s)
- Pratik Rajesh Chheda
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242 USA
| | - Grant T. Cooling
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242 USA
| | - Sondra F. Dean
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242 USA
| | - Jonah Propp
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242 USA
| | - Kathryn F. Hobbs
- Department of Biochemistry, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 USA
| | - M. Ashley Spies
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242 USA
- Department of Biochemistry, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
8
|
Chen J, Zaer S, Drori P, Zamel J, Joron K, Kalisman N, Lerner E, Dokholyan NV. The structural heterogeneity of α-synuclein is governed by several distinct subpopulations with interconversion times slower than milliseconds. Structure 2021; 29:1048-1064.e6. [PMID: 34015255 PMCID: PMC8419013 DOI: 10.1016/j.str.2021.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022]
Abstract
α-Synuclein plays an important role in synaptic functions by interacting with synaptic vesicle membrane, while its oligomers and fibrils are associated with several neurodegenerative diseases. The specific monomer structures that promote its membrane binding and self-association remain elusive due to its transient nature as an intrinsically disordered protein. Here, we use inter-dye distance distributions from bulk time-resolved Förster resonance energy transfer as restraints in discrete molecular dynamics simulations to map the conformational space of the α-synuclein monomer. We further confirm the generated conformational ensemble in orthogonal experiments utilizing far-UV circular dichroism and cross-linking mass spectrometry. Single-molecule protein-induced fluorescence enhancement measurements show that within this conformational ensemble, some of the conformations of α-synuclein are surprisingly stable, exhibiting conformational transitions slower than milliseconds. Our comprehensive analysis of the conformational ensemble reveals essential structural properties and potential conformations that promote its various functions in membrane interaction or oligomer and fibril formation.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sofia Zaer
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Joanna Zamel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Khalil Joron
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Kalisman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA; Departments of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
9
|
Ginosyan S, Grabski H, Tiratsuyan S. In vitro and in silico Determination of the Interaction of Artemisinin with Human Serum Albumin. Mol Biol 2020. [DOI: 10.1134/s0026893320040056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Russo Spena C, De Stefano L, Poli G, Granchi C, El Boustani M, Ecca F, Grassi G, Grassi M, Canzonieri V, Giordano A, Tuccinardi T, Caligiuri I, Rizzolio F. Virtual screening identifies a PIN1 inhibitor with possible antiovarian cancer effects. J Cell Physiol 2019; 234:15708-15716. [PMID: 30697729 DOI: 10.1002/jcp.28224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase, NIMA-interacting 1 (PIN1) is a peptidyl-prolyl isomerase that binds phospho-Ser/Thr-Pro motifs in proteins and catalyzes the cis-trans isomerization of proline peptide bonds. PIN1 is overexpressed in several cancers including high-grade serous ovarian cancer. Since few therapies are effective against this cancer, PIN1 could be a therapeutic target but effective PIN1 inhibitors are lacking. To identify molecules with in vivo inhibitory effects on PIN1, we used consensus docking to model existing PIN1-ligand X-ray structures and to screen a chemical database for candidate inhibitors. Ten molecules were selected and tested in cellular assays, leading to the identification of VS10 that bound and inhibited PIN1. VS10 treatment reduced the viability of ovarian cancer cell lines by inducing proteasomal PIN1 degradation, without effects on PIN1 transcription, and also reduced the levels of downstream targets β-catenin, cyclin D1, and pSer473-Akt. VS10 is a selective PIN1 inhibitor that may offer new opportunities for treating PIN1-overexpressing tumors.
Collapse
Affiliation(s)
- Concetta Russo Spena
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
- Doctoral School in Chemistry, University of Trieste, Trieste, Italy
| | - Lucia De Stefano
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
- Doctoral School in Chemistry, University of Trieste, Trieste, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Maguie El Boustani
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
- Doctoral School in Molecular Biomedicine, University of Trieste, Trieste, Italy
| | - Fabrizio Ecca
- Experimental and Clinical Pharmacology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Isabella Caligiuri
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
| | - Flavio Rizzolio
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venezia-Mestre, Italy
| |
Collapse
|
11
|
Ricci-López J, Vidal-Limon A, Zunñiga M, Jimènez VA, Alderete JB, Brizuela CA, Aguila S. Molecular modeling simulation studies reveal new potential inhibitors against HPV E6 protein. PLoS One 2019; 14:e0213028. [PMID: 30875378 PMCID: PMC6420176 DOI: 10.1371/journal.pone.0213028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
High-risk strains of human papillomavirus (HPV) have been identified as the etiologic agent of some anogenital tract, head, and neck cancers. Although prophylactic HPV vaccines have been approved; it is still necessary a drug-based treatment against the infection and its oncogenic effects. The E6 oncoprotein is one of the most studied therapeutic targets of HPV, it has been identified as a key factor in cell immortalization and tumor progression in HPV-positive cells. E6 can promote the degradation of p53, a tumor suppressor protein, through the interaction with the cellular ubiquitin ligase E6AP. Therefore, preventing the formation of the E6-E6AP complex is one of the main strategies to inhibit the viability and proliferation of infected cells. Herein, we propose an in silico pipeline to identify small-molecule inhibitors of the E6-E6AP interaction. Virtual screening was carried out by predicting the ADME properties of the molecules and performing ensemble-based docking simulations to E6 protein followed by binding free energy estimation through MM/PB(GB)SA methods. Finally, the top-three compounds were selected, and their stability in the E6 docked complex and their effect in the inhibition of the E6-E6AP interaction was corroborated by molecular dynamics simulation. Therefore, this pipeline and the identified molecules represent a new starting point in the development of anti-HPV drugs.
Collapse
Affiliation(s)
- Joel Ricci-López
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autonoma de Mèxico, Ensenada, Baja California, México
| | - Abraham Vidal-Limon
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autonoma de Mèxico, Ensenada, Baja California, México
| | - Matías Zunñiga
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Chile
| | - Verónica A. Jimènez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | | | - Sergio Aguila
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autonoma de Mèxico, Ensenada, Baja California, México
| |
Collapse
|
12
|
Lee S, Nivedha AK, Tate CG, Vaidehi N. Dynamic Role of the G Protein in Stabilizing the Active State of the Adenosine A 2A Receptor. Structure 2019; 27:703-712.e3. [PMID: 30713025 PMCID: PMC6531377 DOI: 10.1016/j.str.2018.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/28/2018] [Accepted: 12/09/2018] [Indexed: 11/20/2022]
Abstract
Agonist binding in the extracellular region of the G protein-coupled adenosine A2A receptor increases its affinity to the G proteins in the intracellular region, and vice versa. The structural basis for this effect is not evident from the crystal structures of A2AR in various conformational states since it stems from the receptor dynamics. Using atomistic molecular dynamics simulations on four different conformational states of the adenosine A2A receptor, we observed that the agonists show decreased ligand mobility, lower entropy of the extracellular loops in the active-intermediate state compared with the inactive state. In contrast, the entropy of the intracellular region increases to prime the receptor for coupling the G protein. Coupling of the G protein to A2AR shrinks the agonist binding site, making tighter receptor agonist contacts with an increase in the strength of allosteric communication compared with the active-intermediate state. These insights provide a strong basis for structure-based ligand design studies. GPCR conformation dynamics reveals the forward and backward allosteric mechanism Agonist binding increases the entropy in the intracellular region of the GPCR G protein binding shrinks the receptor-ligand contacts in the extracellular region Increased allostery between G protein and agonist in the GPCR-G protein complex
Collapse
Affiliation(s)
- Sangbae Lee
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Anita K Nivedha
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
13
|
Xie B, Clark JD, Minh DDL. Efficiency of Stratification for Ensemble Docking Using Reduced Ensembles. J Chem Inf Model 2018; 58:1915-1925. [PMID: 30114370 PMCID: PMC6338335 DOI: 10.1021/acs.jcim.8b00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular docking can account for receptor flexibility by combining the docking score over multiple rigid receptor conformations, such as snapshots from a molecular dynamics simulation. Here, we evaluate a number of common snapshot selection strategies using a quality metric from stratified sampling, the efficiency of stratification, which compares the variance of a selection strategy to simple random sampling. We also extend the metric to estimators of exponential averages (which involve an exponential transformation, averaging, and inverse transformation) and minima. For docking sets of over 500 ligands to four different proteins of varying flexibility, we observe that, for estimating ensemble averages and exponential averages, many clustering algorithms have similar performance trends: for a few snapshots (less than 25), medoids are the most efficient, while, for a larger number, optimal (the allocation that minimizes the variance) and proportional (to the size of each cluster) allocation become more efficient. Proportional allocation appears to be the most consistently efficient for estimating minima.
Collapse
Affiliation(s)
- Bing Xie
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - John D. Clark
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
14
|
Liang H, Zhou G, Ge Y, D'Ambrosio EA, Eidem TM, Blanchard C, Shehatou C, Chatare VK, Dunman PM, Valentine AM, Voelz VA, Grimes CL, Andrade RB. Elucidating the inhibition of peptidoglycan biosynthesis in Staphylococcus aureus by albocycline, a macrolactone isolated from Streptomyces maizeus. Bioorg Med Chem 2018; 26:3453-3460. [PMID: 29805074 PMCID: PMC6008248 DOI: 10.1016/j.bmc.2018.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/12/2018] [Indexed: 02/01/2023]
Abstract
Antibiotic resistance is a serious threat to global public health, and methicillin-resistant Staphylococcus aureus (MRSA) is a poignant example. The macrolactone natural product albocycline, derived from various Streptomyces strains, was recently identified as a promising antibiotic candidate for the treatment of both MRSA and vancomycin-resistant S. aureus (VRSA), which is another clinically relevant and antibiotic resistant strain. Moreover, it was hypothesized that albocycline's antimicrobial activity was derived from the inhibition of peptidoglycan (i.e., bacterial cell wall) biosynthesis. Herein, preliminary mechanistic studies are performed to test the hypothesis that albocycline inhibits MurA, the enzyme that catalyzes the first step of peptidoglycan biosynthesis, using a combination of biological assays alongside molecular modeling and simulation studies. Computational modeling suggests albocycline exists as two conformations in solution, and computational docking of these conformations to an ensemble of simulated receptor structures correctly predicted preferential binding to S. aureus MurA-the enzyme that catalyzes the first step of peptidoglycan biosynthesis-over Escherichia coli (E. coli) MurA. Albocycline isolated from the producing organism (Streptomyces maizeus) weakly inhibited S. aureus MurA (IC50 of 480 μM) but did not inhibit E. coli MurA. The antimicrobial activity of albocycline against resistant S. aureus strains was superior to that of vancomycin, preferentially inhibiting Gram-positive organisms. Albocycline was not toxic to human HepG2 cells in MTT assays. While these studies demonstrate that albocycline is a promising lead candidate against resistant S. aureus, taken together they suggest that MurA is not the primary target, and further work is necessary to identify the major biological target.
Collapse
Affiliation(s)
- Hai Liang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Guangfeng Zhou
- Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
| | - Yunhui Ge
- Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
| | - Elizabeth A D'Ambrosio
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Tess M Eidem
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Catlyn Blanchard
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Cindy Shehatou
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Vijay K Chatare
- Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Ann M Valentine
- Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
| | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
15
|
Strecker C, Meyer B. Plasticity of the Binding Site of Renin: Optimized Selection of Protein Structures for Ensemble Docking. J Chem Inf Model 2018; 58:1121-1131. [PMID: 29683661 DOI: 10.1021/acs.jcim.8b00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.
Collapse
Affiliation(s)
- Claas Strecker
- Department of Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany
| | - Bernd Meyer
- Department of Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany
| |
Collapse
|
16
|
Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov 2017; 13:23-37. [DOI: 10.1080/17460441.2018.1403419] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | | | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|