1
|
Verma S, Nair NN. A Comprehensive Study of Factors Affecting the Prediction of the p Ka Shift of Asp 26 in Thioredoxin Protein. J Phys Chem B 2024; 128:7304-7312. [PMID: 39023356 DOI: 10.1021/acs.jpcb.4c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The stable protonation state of ionizable amino acids in a protein can be predicted by computing the pKa shift of that residue within the protein environment. Thermodynamic Integration (TI) is an ideal molecular dynamics-based approach for predicting the pKa shift of ionizable protein residues. Here, we probe TI-based simulation protocols for their ability to accurately predict the pKa shift of Asp26 in thioredoxin. While implicit solvent models can predict the pKa shift accurately, explicit solvent models result in substantial errors. To understand the underlying reason for this surprising discrepancy, we investigate the role of various factors such as solvent models, conformational sampling, background charges, and polarization.
Collapse
Affiliation(s)
- Shivani Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India
| |
Collapse
|
2
|
Hernández González JE, de Araujo AS. Alchemical Calculation of Relative Free Energies for Charge-Changing Mutations at Protein-Protein Interfaces Considering Fixed and Variable Protonation States. J Chem Inf Model 2023; 63:6807-6822. [PMID: 37851531 DOI: 10.1021/acs.jcim.3c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The calculation of relative free energies (ΔΔG) for charge-changing mutations at protein-protein interfaces through alchemical methods remains challenging due to variations in the system's net charge during charging steps, the possibility of mutated and contacting ionizable residues occurring in various protonation states, and undersampling issues. In this study, we present a set of strategies, collectively termed TIRST/TIRST-H+, to address some of these challenges. Our approaches combine thermodynamic integration (TI) with the prediction of pKa shifts to calculate ΔΔG values. Moreover, special sets of restraints are employed to keep the alchemically transformed molecules separated. The accuracy of the devised approaches was assessed on a large and diverse data set comprising 164 point mutations of charged residues (Asp, Glu, Lys, and Arg) to Ala at the protein-protein interfaces of complexes with known three-dimensional structures. Mean absolute and root-mean-square errors ranging from 1.38 to 1.66 and 1.89 to 2.44 kcal/mol, respectively, and Pearson correlation coefficients of ∼0.6 were obtained when testing the approaches on the selected data set using the GPU-TI module of Amber18 suite and the ff14SB force field. Furthermore, the inclusion of variable protonation states for the mutated acid residues improved the accuracy of the predicted ΔΔG values. Therefore, our results validate the use of TIRST/TIRST-H+ in prospective studies aimed at evaluating the impact of charge-changing mutations to Ala on the stability of protein-protein complexes.
Collapse
|
3
|
Cai Z, Liu T, Lin Q, He J, Lei X, Luo F, Huang Y. Basis for Accurate Protein p Ka Prediction with Machine Learning. J Chem Inf Model 2023; 63:2936-2947. [PMID: 37146199 DOI: 10.1021/acs.jcim.3c00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
pH regulates protein structures and the associated functions in many biological processes via protonation and deprotonation of ionizable side chains where the titration equilibria are determined by pKa's. To accelerate pH-dependent molecular mechanism research in the life sciences or industrial protein and drug designs, fast and accurate pKa prediction is crucial. Here we present a theoretical pKa data set PHMD549, which was successfully applied to four distinct machine learning methods, including DeepKa, which was proposed in our previous work. To reach a valid comparison, EXP67S was selected as the test set. Encouragingly, DeepKa was improved significantly and outperforms other state-of-the-art methods, except for the constant-pH molecular dynamics, which was utilized to create PHMD549. More importantly, DeepKa reproduced experimental pKa orders of acidic dyads in five enzyme catalytic sites. Apart from structural proteins, DeepKa was found applicable to intrinsically disordered peptides. Further, in combination with solvent exposures, it is revealed that DeepKa offers the most accurate prediction under the challenging circumstance that hydrogen bonding or salt bridge interaction is partly compensated by desolvation for a buried side chain. Finally, our benchmark data qualify PHMD549 and EXP67S as the basis for future developments of protein pKa prediction tools driven by artificial intelligence. In addition, DeepKa built on PHMD549 has been proven an efficient protein pKa predictor and thus can be applied immediately to, for example, pKa database construction, protein design, drug discovery, and so on.
Collapse
Affiliation(s)
- Zhitao Cai
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Tengzi Liu
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Qiaoling Lin
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Jiahao He
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Xiaowei Lei
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Fangfang Luo
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Yandong Huang
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
4
|
Sun Z, He Q, Gong Z, Kalhor P, Huai Z, Liu Z. A General Picture of Cucurbit[8]uril Host–Guest Binding: Recalibrating Bonded Interactions. Molecules 2023; 28:molecules28073124. [PMID: 37049887 PMCID: PMC10095826 DOI: 10.3390/molecules28073124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Atomic-level understanding of the dynamic feature of host–guest interactions remains a central challenge in supramolecular chemistry. The remarkable guest binding behavior of the Cucurbiturils family of supramolecular containers makes them promising drug carriers. Among Cucurbit[n]urils, Cucurbit[8]uril (CB8) has an intermediate portal size and cavity volume. It can exploit almost all host–guest recognition motifs formed by this host family. In our previous work, an extensive computational investigation of the binding of seven commonly abused and structurally diverse drugs to the CB8 host was performed, and a general dynamic binding picture of CB8-guest interactions was obtained. Further, two widely used fixed-charge models for drug-like molecules were investigated and compared in great detail, aiming at providing guidelines in choosing an appropriate charge scheme in host-guest modelling. Iterative refitting of atomic charges leads to improved binding thermodynamics and the best root-mean-squared deviation from the experimental reference is 2.6 kcal/mol. In this work, we focus on a thorough evaluation of the remaining parts of classical force fields, i.e., the bonded interactions. The widely used general Amber force fields are assessed and refitted with generalized force-matching to improve the intra-molecular conformational preference, and thus the description of inter-molecular host–guest interactions. The interaction pattern and binding thermodynamics show a significant dependence on the modelling parameters. The refitted system-specific parameter set improves the consistency of the modelling results and the experimental reference significantly. Finally, combining the previous charge-scheme comparison and the current force-field refitting, we provide general guidelines for the theoretical modelling of host–guest binding.
Collapse
|
5
|
Liu X, Zheng L, Qin C, Zhang JZH, Sun Z. Comprehensive evaluation of end-point free energy techniques in carboxylated-pillar[6]arene host-guest binding: I. Standard procedure. J Comput Aided Mol Des 2022; 36:735-752. [PMID: 36136209 DOI: 10.1007/s10822-022-00475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Despite the massive application of end-point free energy methods in protein-ligand and protein-protein interactions, computational understandings about their performance in relatively simple and prototypical host-guest systems are limited. In this work, we present a comprehensive benchmark calculation with standard end-point free energy techniques in a recent host-guest dataset containing 13 host-guest pairs involving the carboxylated-pillar[6]arene host. We first assess the charge schemes for solutes by comparing the charge-produced electrostatics with many ab initio references, in order to obtain a preliminary albeit detailed view of the charge quality. Then, we focus on four modelling details of end-point free energy calculations, including the docking procedure for the generation of initial condition, the charge scheme for host and guest molecules, the water model used in explicit-solvent sampling, and the end-point methods for free energy estimation. The binding thermodynamics obtained with different modelling schemes are compared with experimental references, and some practical guidelines on maximizing the performance of end-point methods in practical host-guest systems are summarized. Further, we compare our simulation outcome with predictions in the grand challenge and discuss further developments to improve the prediction quality of end-point free energy methods. Overall, unlike the widely acknowledged applicability in protein-ligand binding, the standard end-point calculations cannot produce useful outcomes in host-guest binding and thus are not recommended unless alterations are performed.
Collapse
Affiliation(s)
- Xiao Liu
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Lei Zheng
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Chu Qin
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Zhaoxi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Sun Z, Wang M, He Q, Liu Z. Molecular Modeling of Ionic Liquids: Force‐Field Validation and Thermodynamic Perspective from Large‐Scale Fast‐Growth Solvation Free Energy Calculations. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Mao Wang
- NCS Testing Technology Co., Ltd. No. 13, Gaoliangqiao Xiejie Beijing 100081 China
| | - Qiaole He
- AI Department of Enzymaster (Ningbo) Bio‐Engineering Co., Ltd. North Century Avenue 333 Ningbo 315100 China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
7
|
Sun Z, He Q. Seeding the multi-dimensional nonequilibrium pulling for Hamiltonian variation: indirect nonequilibrium free energy simulations at QM levels. Phys Chem Chem Phys 2022; 24:8800-8819. [PMID: 35352744 DOI: 10.1039/d2cp00355d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The combination of free energy simulations in the alchemical and configurational spaces provides a feasible route to access the thermodynamic profiles under a computationally demanding target Hamiltonian. Normally, due to the significant differences between the computational cost of ab initio quantum mechanics (QM) calculations and those of semi-empirical quantum mechanics (SQM) and molecular mechanics (MM), this indirect method could be used to obtain the QM thermodynamics by combining the SQM or MM results and the SQM-to-QM or MM-to-QM corrections. In our previous work, a multi-dimensional nonequilibrium pulling framework for Hamiltonian variations was introduced based on bidirectional pulling and bidirectional reweighting. The method performs nonequilibrium free energy simulations in the configurational space to obtain the thermodynamic profile along the conformational change pathway under a selected computationally efficient Hamiltonian, and uses the nonequilibrium alchemical method to correct or perturb the thermodynamic profile to that under the target Hamiltonian. The BAR-based method is designed to achieve the best generality and transferability and thus leads to modest (∼20 fold) speedup. In this work, we explore the possibility of further accelerating the nonequilibrium free energy simulation by employing unidirectional pulling and using the selection criterion to obtain the initial configurations used to initiate nonequilibrium trajectories following the idea of adaptive steered molecular dynamics (ASMD). A single initial condition is used to seed the whole multi-dimensional nonequilibrium free energy simulation and the sampling is performed fully in the nonequilibrium ensemble. Introducing very short ps-length equilibrium sampling to grab more initial seeds could also be helpful. The ASMD scheme estimates the free energy difference with the unidirectional exponential average (EXP), but it does not follow exactly the requirements of the EXP estimator. Another deficiency of the seeding simulation is the inherently sequential or serial pulling due to the inter-segment dependency, which triggers some problems in the parallelizability of the simulation. Numerical tests are performed to grasp some insights and guidelines for using this selection-criterion-based ASMD scheme. The presented selection-criterion-based multi-dimensional ASMD scheme follows the same perturbation network of the BAR-based method, and thus could be used in various Hamiltonian-variation cases.
Collapse
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China.
| | - Qiaole He
- AI Department of Enzymaster (Ningbo) Bio-Engineering Co., Ltd, North Century Avenue 333, 315100 Ningbo, China
| |
Collapse
|
8
|
Sun Z, Huai Z, He Q, Liu Z. A General Picture of Cucurbit[8]uril Host-Guest Binding. J Chem Inf Model 2021; 61:6107-6134. [PMID: 34818004 DOI: 10.1021/acs.jcim.1c01208] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Describing, understanding, and designing complex interaction networks within macromolecular systems remain challenging in modern chemical research. Host-guest systems, despite their relative simplicity in both the structural feature and interaction patterns, still pose problems in theoretical modeling. The barrel-shaped supramolecular container cucurbit[8]uril (CB8) shows promising functionalities in various areas, e.g., catalysis and molecular recognition. It can stably coordinate a series of structurally diverse guests with high affinities. In this work, we examine the binding of seven commonly abused drugs to the CB8 host, aiming at providing a general picture of CB8-guest binding. Extensive sampling of the configurational space of these host-guest systems is performed, and the binding pathway and interaction patterns of CB8-guest complexes are investigated. A thorough comparison of widely used fixed-charge models for drug-like molecules is presented. Iterative refitting of the atomic charges suggests significant conformation dependence of charge generation. The initial model generated at the original conformation could be inaccurate for new conformations explored during conformational search, and the newly fitted charge set improves the prediction-experiment correlation significantly. Our investigations of the configurational space of CB8-drug complexes suggest that the host-guest interactions are more complex than expected. Despite the structural simplicities of these molecules, the conformational fluctuations of the host and the guest molecules and orientations of functional groups lead to the existence of an ensemble of binding modes. The insights of the binding thermodynamics, performance of fixed-charge models, and binding patterns of the CB8-guest systems are useful for studying and elucidating the binding mechanism of other host-guest complexes.
Collapse
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Huai
- XtalPi-AI Research Center (XARC), 9F, Tower A, Dongsheng Building, No. 8, Zhongguancun East Road, Haidian District, Beijing 100083, P.R. China
| | - Qiaole He
- AI Department of Enzymaster (Ningbo) Bio-Engineering Co., Ltd., North Century Avenue 333, Ningbo 315100, China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Sun Z, Kalhor P, Xu Y, Liu J. Extensive numerical tests of leapfrog integrator in middle thermostat scheme in molecular simulations. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2111242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China
| | - Payam Kalhor
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Wang X. Conformational Fluctuations in GTP-Bound K-Ras: A Metadynamics Perspective with Harmonic Linear Discriminant Analysis. J Chem Inf Model 2021; 61:5212-5222. [PMID: 34570515 DOI: 10.1021/acs.jcim.1c00844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomacromolecules often undergo significant conformational rearrangements during function. In proteins, these motions typically consist in nontrivial, concerted rearrangement of multiple flexible regions. Mechanistic, thermodynamics, and kinetic predictions can be obtained via molecular dynamics simulations, provided that the simulation time is at least comparable to the relevant time scale of the process of interest. Because of the substantial computational cost, however, plain MD simulations often have difficulty in obtaining sufficient statistics for converged estimates, requiring the use of more-advanced techniques. Central in many enhanced sampling methods is the definition of a small set of relevant degrees of freedom (collective variables) that are able to describe the transitions between different metastable states of the system. The harmonic linear discriminant analysis (HLDA) has been shown to be useful for constructing low-dimensional collective variables in various complex systems. Here, we apply HLDA to study the free-energy landscape of a monomeric protein around its native state. More precisely, we study the K-Ras protein bound to GTP, focusing on two flexible loops and on the region associated with oncogenic mutations. We perform microsecond-long biased simulations on the wild type and on G12C, G12D, G12 V mutants, describe the resulting free-energy landscapes, and compare our predictions with previous experimental and computational studies. The fast interconversion between open and closed macroscopic states and their similar thermodynamic stabilities are observed. The mutation-induced effects include the alternations of the relative stabilities of different conformational states and the introduction of many microscopic metastable states. Together, our results demonstrate the applicability of the HLDA-based protocol for the conformational sampling of multiple flexible regions in folded proteins.
Collapse
Affiliation(s)
- Xiaohui Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Jurasz J, Bagiński M, Czub J, Wieczór M. Molecular mechanism of proton-coupled ligand translocation by the bacterial efflux pump EmrE. PLoS Comput Biol 2021; 17:e1009454. [PMID: 34613958 PMCID: PMC8523053 DOI: 10.1371/journal.pcbi.1009454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
The current surge in bacterial multi-drug resistance (MDR) is one of the largest challenges to public health, threatening to render ineffective many therapies we rely on for treatment of serious infections. Understanding different factors that contribute to MDR is hence crucial from the global “one health” perspective. In this contribution, we focus on the prototypical broad-selectivity proton-coupled antiporter EmrE, one of the smallest known ligand transporters that confers resistance to aromatic cations in a number of clinically relevant species. As an asymmetric homodimer undergoing an “alternating access” protomer-swap conformational change, it serves as a model for the mechanistic understanding of more complex drug transporters. Here, we present a free energy and solvent accessibility analysis that indicates the presence of two complementary ligand translocation pathways that remain operative in a broad range of conditions. Our simulations show a previously undescribed desolvated apo state and anticorrelated accessibility in the ligand-bound state, explaining on a structural level why EmrE does not disrupt the pH gradient through futile proton transfer. By comparing the behavior of a number of model charged and/or aromatic ligands, we also explain the origin of selectivity of EmrE towards a broad class of aromatic cations. Finally, we explore unbiased pathways of ligand entry and exit to identify correlated structural changes implicated in ligand binding and release, as well as characterize key intermediates of occupancy changes. EmrE is a prototypical bacterial multidrug transporter (MDR) that confers resistance to drugs and antiseptics. Due to its structural simplicity, its mechanism of ligand recognition and translocation are relevant for a wide class of transporters. This proton-coupled antiport expels aromatic cations from the cytoplasm using the alternating access mechanism, achieving impressive levels of efficiency and robustness. Our protonation-specific free energy profiles, Grotthuss wire analyses and equilibrium simulations show how a deceivingly simple system can exchange ions with robustness and precision, hopefully inspiring rational efforts to design new MDR inhibitors.
Collapse
Affiliation(s)
- Jakub Jurasz
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Gdansk, Poland
| | - Maciej Bagiński
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Gdansk, Poland
- BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
| | - Jacek Czub
- BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
- Molecular Modeling and Bioinformatics Group, IRB Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
12
|
Sun Z, Liu Z. BAR‐Based Multi‐Dimensional Nonequilibrium Pulling for Indirect Construction of QM/MM Free Energy Landscapes: Varying the QM Region. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
13
|
Huai Z, Yang H, Sun Z. Binding thermodynamics and interaction patterns of human purine nucleoside phosphorylase-inhibitor complexes from extensive free energy calculations. J Comput Aided Mol Des 2021; 35:643-656. [PMID: 33759016 DOI: 10.1007/s10822-021-00382-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
Human purine nucleoside phosphorylase (hPNP) plays a significant role in the catabolism of deoxyguanosine. The trimeric protein is an important target in the treatment of T-cell cancers and autoimmune disorders. Experimental studies on the inhibition of the hPNP observe that the first ligand bound to one of three subunits effectively inhibits the protein, while the binding of more ligands to the subsequent sites shows negative cooperativities. In this work, we performed extensive end-point and alchemical free energy calculations to determine the binding thermodynamics of the trimeric protein-ligand system. 13 Immucillin inhibitors with experimental results are under calculation. Two widely accepted charge schemes for small molecules including AM1-BCC and RESP are adopted for ligands. The results of RESP are in better agreement with the experimental reference. Further investigations of the interaction networks in the protein-ligand complexes reveal that several residues play significant roles in stabilizing the complex structure. The most commonly observed ones include PHE200, GLU201, MET219, and ASN243. The conformations of the protein in different protein-ligand complexes are observed to be similar. We expect these insights to aid the development of potent drugs targeting hPNP.
Collapse
Affiliation(s)
- Zhe Huai
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Huaiyu Yang
- College of Engineering, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
14
|
On the Use of the Discrete Constant pH Molecular Dynamics to Describe the Conformational Space of Peptides. Polymers (Basel) 2020; 13:polym13010099. [PMID: 33383731 PMCID: PMC7795291 DOI: 10.3390/polym13010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/02/2022] Open
Abstract
Solvent pH is an important property that defines the protonation state of the amino acids and, therefore, modulates the interactions and the conformational space of the biochemical systems. Generally, this thermodynamic variable is poorly considered in Molecular Dynamics (MD) simulations. Fortunately, this lack has been overcome by means of the Constant pH Molecular Dynamics (CPHMD) methods in the recent decades. Several studies have reported promising results from these approaches that include pH in simulations but focus on the prediction of the effective pKa of the amino acids. In this work, we want to shed some light on the CPHMD method and its implementation in the AMBER suitcase from a conformational point of view. To achieve this goal, we performed CPHMD and conventional MD (CMD) simulations of six protonatable amino acids in a blocked tripeptide structure to compare the conformational sampling and energy distributions of both methods. The results reveal strengths and weaknesses of the CPHMD method in the implementation of AMBER18 version. The change of the protonation state according to the chemical environment is presumably an improvement in the accuracy of the simulations. However, the simulations of the deprotonated forms are not consistent, which is related to an inaccurate assignment of the partial charges of the backbone atoms in the CPHMD residues. Therefore, we recommend the CPHMD methods of AMBER program but pointing out the need to compare structural properties with experimental data to bring reliability to the conformational sampling of the simulations.
Collapse
|
15
|
Huai Z, Shen Z, Sun Z. Binding Thermodynamics and Interaction Patterns of Inhibitor-Major Urinary Protein-I Binding from Extensive Free-Energy Calculations: Benchmarking AMBER Force Fields. J Chem Inf Model 2020; 61:284-297. [PMID: 33307679 DOI: 10.1021/acs.jcim.0c01217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mouse major urinary protein (MUP) plays a key role in the pheromone communication system. The one-end-closed β-barrel of MUP-I forms a small, deep, and hydrophobic central cavity, which could accommodate structurally diverse ligands. Previous computational studies employed old protein force fields and short simulation times to determine the binding thermodynamics or investigated only a small number of structurally similar ligands, which resulted in sampled regions far from the experimental structure, nonconverged sampling outcomes, and limited understanding of the possible interaction patterns that the cavity could produce. In this work, extensive end-point and alchemical free-energy calculations with advanced protein force fields were performed to determine the binding thermodynamics of a series of MUP-inhibitor systems and investigate the inter- and intramolecular interaction patterns. Three series of inhibitors with a total of 14 ligands were simulated. We independently simulated the MUP-inhibitor complexes under two advanced AMBER force fields. Our benchmark test showed that the advanced AMBER force fields including AMBER19SB and AMBER14SB provided better descriptions of the system, and the backbone root-mean-square deviation (RMSD) was significantly lowered compared with previous computational studies with old protein force fields. Surprisingly, although the latest AMBER force field AMBER19SB provided better descriptions of various observables, it neither improved the binding thermodynamics nor lowered the backbone RMSD compared with the previously proposed and widely used AMBER14SB. The older but widely used AMBER14SB actually achieved better performance in the prediction of binding affinities from the alchemical and end-point free-energy calculations. We further analyzed the protein-ligand interaction networks to identify important residues stabilizing the bound structure. Six residues including PHE38, LEU40, PHE90, ALA103, LEU105, and TYR120 were found to contribute the most significant part of protein-ligand interactions, and 10 residues were found to provide favorable interactions stabilizing the bound state. The two AMBER force fields gave extremely similar interaction networks, and the secondary structures also showed similar behavior. Thus, the intra- and intermolecular interaction networks described with the two AMBER force fields are similar. Therefore, AMBER14SB could still be the default option in free-energy calculations to achieve highly accurate binding thermodynamics and interaction patterns.
Collapse
Affiliation(s)
- Zhe Huai
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Zhaoxi Shen
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
16
|
Li Z, Zhang X, Li C, Kovalevsky A, Wan Q. Studying the Role of a Single Mutation of a Family 11 Glycoside Hydrolase Using High-Resolution X-ray Crystallography. Protein J 2020; 39:671-680. [PMID: 33128114 DOI: 10.1007/s10930-020-09938-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/16/2023]
Abstract
XynII is a family 11 glycoside hydrolase that uses the retaining mechanism for catalysis. In the active site, E177 works as the acid/base and E86 works as the nucleophile. Mutating an uncharged residue (N44) to an acidic residue (D) near E177 decreases the enzyme's optimal pH by ~ 1.0 unit. D44 was previously suggested to be a second proton carrier for catalysis. To test this hypothesis, we abolished the activity of E177 by mutating it to be Q, and mutated N44 to be D or E. These double mutants have dramatically decreased activities. Our high-resolution crystallographic structures and the microscopic pKa calculations show that D44 has similar position and pKa value during catalysis, indicating that D44 changes electrostatics around E177, which makes it prone to rotate as the acid/base in acidic conditions, thus decreases the pH optimum. Our results could be helpful to design enzymes with different pH optimum.
Collapse
Affiliation(s)
- Zhihong Li
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaoshuai Zhang
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunran Li
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Qun Wan
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
17
|
Huai Z, Sun Z. Titration of Adenine in a GA Mismatch with Grand Canonical Simulations. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2020. [DOI: 10.1142/s2737416520420053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Computational prediction of the pKa of ionizable groups remains a central challenge in biomolecular modeling. Although all-atom fixed-charge force fields could be accurate to describe the interaction network within the biomolecules, proper sampling techniques are required to obtain the thermodynamic information in the (de)protonation event. Sufficient sampling requires an ensemble of structures from simulations with proper treatments of the acid-base equilibria, and the grand canonical simulation technique could be used to model the growth/annihilation of hydrogen atoms by merging Hamiltonians of different protonation states into one simulation ensemble. The electrostatic feature of nucleotide systems is especially difficult to model, and the situation becomes more challenging when the ionizable site is highly perturbed. Although there are many successful predictions obtained from the grand canonical constant pH simulations, few reports focus on highly perturbed nucleotide systems with unconventional base-pair features. In this work, with the discrete constant pH method, we investigate the titration thermodynamics of an adenine in the catalytic triad in a 35-nucleotide single-stranded RNA hairpin, featuring an unconventional GA mismatch and a substantially shifted pKa value. Validation tests are performed with two system setups, both of which provide pKa predictions in good agreement with the experimental value. A single-configuration-based technique is used to calculate the pKa for comparison. The current success indicates the predictive power of the current nucleotide modeling framework.
Collapse
Affiliation(s)
- Zhe Huai
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
18
|
SAMPL7 TrimerTrip host-guest binding affinities from extensive alchemical and end-point free energy calculations. J Comput Aided Mol Des 2020; 35:117-129. [PMID: 33037549 DOI: 10.1007/s10822-020-00351-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
The prediction of host-guest binding affinities with computational modelling is still a challenging task. In the 7th statistical assessment of the modeling of proteins and ligands (SAMPL) challenge, a new host named TrimerTrip was synthesized and the thermodynamic parameters of 16 structurally diverse guests binding to the host were characterized. In the TrimerTrip-guest challenge, only structures of the host and the guests are provided, which indicates that the predictions of both the binding poses and the binding affinities are under assessment. In this work, starting from the binding poses obtained from our previous enhanced sampling simulations in the configurational space, we perform extensive alchemical and end-point free energy calculations to calculate the host-guest binding affinities retrospectively. The alchemical predictions with two widely accepted charge schemes (i.e. AM1-BCC and RESP) are in good agreement with the experimental reference, while the end-point estimates perform poorly in reproducing the experimental binding affinities. Aside from the absolute value of the binding affinity, the rank of binding free energies is also crucial in drug design. Surprisingly, the end-point MM/PBSA method seems very powerful in reproducing the experimental rank of binding affinities. Although the length of our simulations is long and the intermediate spacing is dense, the convergence behavior is not very good, which may arise from the flexibility of the host molecule. Enhanced sampling techniques in the configurational space may be required to obtain fully converged sampling. Further, as the length of sampling in alchemical free energy calculations already achieves several hundred ns, performing direct simulations of the binding/unbinding event in the physical space could be more useful and insightful. More details about the binding pathway and mechanism could be obtained in this way. The nonequilibrium method could also be a nice choice if one insists to use the alchemical method, as the intermediate sampling is avoided to some extent.
Collapse
|
19
|
Sun Z. SAMPL7 TrimerTrip host-guest binding poses and binding affinities from spherical-coordinates-biased simulations. J Comput Aided Mol Des 2020; 35:105-115. [PMID: 32776199 DOI: 10.1007/s10822-020-00335-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022]
Abstract
Host-guest binding remains a major challenge in modern computational modelling. The newest 7th statistical assessment of the modeling of proteins and ligands (SAMPL) challenge contains a new series of host-guest systems. The TrimerTrip host binds to 16 structurally diverse guests. Previously, we have successfully employed the spherical coordinates as the collective variables coupled with the enhanced sampling technique metadynamics to enhance the sampling of the binding/unbinding event, search for possible binding poses and calculate the binding affinities in all three host-guest binding cases of the 6th SAMPL challenge. In this work, we report a retrospective study on the TrimerTrip host-guest systems by employing the same protocol to investigate the TrimerTrip host in the SAMPL7 challenge. As no binding pose is provided by the SAMPL7 host, our simulations initiate from randomly selected configurations and are proceeded long enough to obtain converged free energy estimates and search for possible binding poses. The calculated binding affinities are in good agreement with the experimental reference, and the obtained binding poses serve as a nice starting point for end-point or alchemical free energy calculations. Note that as the work is performed after the close of the SAMPL7 challenge, we do not participate in the challenge and the results are not formally submitted to the SAMPL7 challenge.
Collapse
Affiliation(s)
- Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
20
|
Zanetti-Polzi L, Daidone I, Amadei A. Fully Atomistic Multiscale Approach for p Ka Prediction. J Phys Chem B 2020; 124:4712-4722. [PMID: 32427481 DOI: 10.1021/acs.jpcb.0c01752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ionization state of titratable amino acids strongly affects proteins structure and functioning in a large number of biological processes. It is therefore essential to be able to characterize the pKa of ionizable groups inside proteins and to understand its microscopic determinants in order to gain insights into many functional properties of proteins. A big effort has been devoted to the development of theoretical approaches for the prediction of deprotonation free energies, yet the accurate theoretical/computational calculation of pKa values is recognized as a current challenge. A methodology based on a hybrid quantum/classical approach is here proposed for the computation of deprotonation free energies. The method is applied to calculate the pKa of formic acid, methylammonium, and methanethiol, providing results in good agreement with the corresponding experimental estimates. The pKa is also calculated for aspartic acid and lysine as single residues in solution and for three aspartic/glutamic acids inside a well-characterized protein: hen egg white lysozyme. While for small molecules the method is able to deal with multiple protonation states of all titratable groups, this becomes computationally very expensive for proteins. The calculated pKa values for the single amino acids (except for the zwitterionic aspartic acid) and inside the protein display a systematic shift with respect to the experimental values that suggests that the fine balance between hydrophobic and polar interactions might be not accurately reproduced by the usual classical force-fields, thus affecting the computation of deprotonation free energies. The calculated pKa shifts inside the protein are in good agreement with the corresponding experimental ones (within 1 pKa unit), well reproducing the pKa changes due to the protein environment even in the case of large pKa shifts.
Collapse
Affiliation(s)
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, I-67010 L'Aquila, Italy
| | - Andrea Amadei
- Department of Chemical and Technological Sciences, University of Rome "Tor Vergata", Via della Ricerca Scientifica, I-00185 Rome, Italy
| |
Collapse
|
21
|
SAMPL6 host-guest binding affinities and binding poses from spherical-coordinates-biased simulations. J Comput Aided Mol Des 2020; 34:589-600. [PMID: 31974852 DOI: 10.1007/s10822-020-00294-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
Host-guest binding is a challenging problem in computer simulation. The prediction of binding affinities between hosts and guests is an important part of the statistical assessment of the modeling of proteins and ligands (SAMPL) challenges. In this work, the volume-based variant of well-tempered metadynamics is employed to calculate the binding affinities of the host-guest systems in the SAMPL6 challenge. By biasing the spherical coordinates describing the relative position of the host and the guest, the initial-configuration-induced bias vanishes and all possible binding poses are explored. The agreement between the predictions and the experimental results and the observation of new binding poses indicate that the volume-based technique serves as a nice candidate for the calculation of binding free energies and the search of the binding poses.
Collapse
|
22
|
Sun Z, Wang X, Zhang JZH. Theoretical understanding of the thermodynamics and interactions in transcriptional regulator TtgR-ligand binding. Phys Chem Chem Phys 2019; 22:1511-1524. [PMID: 31872826 DOI: 10.1039/c9cp05980f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcriptional regulator TtgR belongs to the TetR family of transcriptional repressors. It depresses the transcription of the TtgABC operon and itself and thus regulates the extrusion of noxious chemicals with efflux pumps in bacterial cells. As the ligand-binding domain of TtgR is rather flexible, it can bind with a number of structurally diverse ligands, such as antibiotics, flavonoids and aromatic solvents. In the current work, we perform equilibrium and nonequilibrium alchemical free energy simulation to predict the binding affinities of a series of ligands targeting the TtgR protein and an agreement between the theoretical prediction and the experimental result is observed. End-point methods MM/PBSA and MM/GBSA are also employed for comparison. We further study the interaction maps and contacts between the protein and the ligand and identify important interactions in the protein-ligand binding cases. The dynamics fluctuation and secondary structures are also investigated. The current work sheds light on atomic and thermodynamic understanding of the TtgR-ligand interactions.
Collapse
Affiliation(s)
- Zhaoxi Sun
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich 52425, Germany. and State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China and Department of Chemistry, New York University, NY, NY 10003, USA.
| |
Collapse
|
23
|
Sun Z. BAR-based multi-dimensional nonequilibrium pulling for indirect construction of QM/MM free energy landscapes: from semi-empirical to ab initio. Phys Chem Chem Phys 2019; 21:21942-21959. [PMID: 31552953 DOI: 10.1039/c9cp04113c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The indirect method for the construction of quantum mechanics (QM)/molecular mechanics (MM) free energy landscapes provides a cheaper alternative for free energy simulations at the QM level. The indirect method features a direct calculation of the free energy profile with a computationally efficient but less accurate Hamiltonian (i.e. low-level Hamiltonian) and a low-level-to-high-level correction. In the thermodynamic cycle, the direct low-level calculation along the physically meaningful reaction coordinate is corrected via the alchemical method, which is often achieved with perturbation-based techniques. In our previous work, a multi-dimensional nonequilibrium pulling framework is proposed for the indirect construction of QM/MM free energy landscapes. Previously, we focused on obtaining semi-empirical QM (SQM) results indirectly from direct MM simulations and MM to SQM corrections. In this work, we apply this method to obtain results under ab initio QM Hamiltonians by combining direct SQM results and SQM to QM corrections. A series of SQM and QM Hamiltonians are benchmarked. It is observed that PM6 achieves the best performance among the low-level Hamiltonians. Therefore, we recommend using PM6 as the low-level theory in the indirect free energy simulation. Considering its higher similarity to the high-level Hamiltonians, PM6 corrected with the bond charge correction could be more accurate than the existing AM1-BCC model. Another central result in the current work is a basic protocol of choosing the strength of restraints and an appropriate time step in nonequilibrium free energy simulation at the stiff spring limit. We provide theoretical derivations to emphasize the importance of using a sufficiently large force constant and choosing an appropriate time step. It is worth noting that a general rule of thumb for choosing the time step, according to our derivation, is that a time step of 1 fs or smaller should be used, as long as the stiff spring approximation is employed, even in simulations with constraints on bonds involving hydrogen atoms.
Collapse
Affiliation(s)
- Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
24
|
Sun Z, Wang X, Zhang JZH, He Q. Sulfur-substitution-induced base flipping in the DNA duplex. Phys Chem Chem Phys 2019; 21:14923-14940. [PMID: 31233058 DOI: 10.1039/c9cp01989h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Base flipping is widely observed in a number of important biological processes. The genetic codes deposited inside the DNA duplex become accessible to external agents upon base flipping. The sulfur substitution of guanine leads to thioguanine, which alters the thermodynamic stability of the GC base pairs and the GT mismatches. Experimental studies conclude that the sulfur substitution decreases the lifetime of the GC base pair. In this work, under three AMBER force fields for nucleotide systems, we firstly performed equilibrium and nonequilibrium free energy simulations to investigate the variation of the thermodynamic profiles in base flipping upon sulfur substitution. It is found that the bsc0 modification, the bsc1 modification and the OL15 modification of AMBER force fields are able to qualitatively describe the sulfur-substitution dependent behavior of the thermodynamics. However, only the two last-generation AMBER force fields are able to provide quantitatively correct predictions. The second computational study on the sulfur substitutions focused on the relative stability of the S6G-C base pair and the S6G-T mismatch. Two conflicting experimental observations were reported by the same authors. One suggested that the S6G-C base pair was more stable, while the other concludes that the S6G-T mismatch was more stable. We answered this question by constructing the free energy profiles along the base flipping pathway computationally.
Collapse
Affiliation(s)
- Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich 52425, Germany.
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China and Department of Chemistry, New York University, NY, NY 10003, USA
| | - Qiaole He
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany. and State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
25
|
Sun Z, Wang X. Thermodynamics of Helix formation in small peptides of varying lengthin vacuo, implicit solvent and explicit solvent: Comparison between AMBER force fields. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2019. [DOI: 10.1142/s0219633619500159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Helix formation is of great significance in protein folding. The helix-forming tendencies of amino acids are accumulated along the sequence to determine the helix-forming tendency of peptides. Computer simulation can be used to model this process in atomic details and give structural insights. In the current work, we employ equilibrate-state free energy simulation to systematically study the folding/unfolding thermodynamics of a series of mutated peptides. Two AMBER force fields including AMBER99SB and AMBER14SB are compared. The new 14SB force field uses refitted torsion parameters compared with 99SB and they share the same atomic charge scheme. We find that in vacuo the helix formation is mutation dependent, which reflects the different helix propensities of different amino acids. In general, there are helix formers, helix indifferent groups and helix breakers. The helical structure becomes more favored when the length of the sequence becomes longer, which arises from the formation of additional backbone hydrogen bonds in the lengthened sequence. Therefore, the helix indifferent groups and helix breakers will become helix formers in long sequences. Also, protonation-dependent helix formation is observed for ionizable groups. In 14SB, the helical structures are more stable than in 99SB and differences can be observed in their grouping schemes, especially in the helix indifferent group. In solvents, all mutations are helix indifferent due to protein–solvent interactions. The decrease in the number of backbone hydrogen bonds is the same with the increase in the number of protein–water hydrogen bonds. The 14SB in explicit solvent is able to capture the free energy minima in the helical state while 14SB in implicit solvent, 99SB in explicit solvent and 99SB in implicit solvent cannot. The helix propensities calculated under 14SB agree with the corresponding experimental values, while the 99SB results obviously deviate from the references. Hence, implicit solvent models are unable to correctly describe the thermodynamics even for the simple helix formation in isolated peptides. Well-developed force fields and explicit solvents are needed to correctly describe the protein dynamics. Aside from the free energy, differences in conformational ensemble under different force fields in different solvent models are observed. The numbers of hydrogen bonds formed under different force fields agree and they are mostly determined by the solvent model.
Collapse
Affiliation(s)
- Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- Institute of Computational Science, Universitàdella Svizzeraitaliana (USI), Via Giuseppe Buffi 13, CH-6900 Lugano, Ticino, Switzerland
| |
Collapse
|
26
|
Wang X, Sun Z. Determination of Base-Flipping Free-Energy Landscapes from Nonequilibrium Stratification. J Chem Inf Model 2019; 59:2980-2994. [PMID: 31124677 DOI: 10.1021/acs.jcim.9b00263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Correct calculation of the variation of free energy upon base flipping is crucial in understanding the dynamics of DNA systems. The free-energy landscape along the flipping pathway gives the thermodynamic stability and the flexibility of base-paired states. Although numerous free-energy simulations are performed in the base flipping cases, no theoretically rigorous nonequilibrium techniques are devised and employed to investigate the thermodynamics of base flipping. In the current work, we report a general nonequilibrium stratification scheme for the efficient calculation of the free-energy landscape of base flipping in DNA duplex. We carefully monitor the convergence behavior of the equilibrium sampling based free-energy simulation and the nonequilibrium stratification and determine the empirical length of time blocks required for converged sampling. Comparison between the performances of the equilibrium umbrella sampling and the nonequilibrium stratification is given. The results show that nonequilibrium free-energy simulation achieves similar accuracy and efficiency compared with the equilibrium enhanced sampling technique in the base flipping cases. We further test a convergence criterion we previously proposed and it comes out that the convergence determined by this criterion agrees with those given by the time-invariant behavior of PMF and the nonlinear dependence of standard deviation on the sample size.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,Institute of Computational Science , Università della Svizzera Italiana (USI) , Via Giuseppe Buffi 13 , CH-6900 , Lugano , Ticino , Switzerland
| | - Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,Computational Biomedicine (IAS-5/INM-9) , Forschungszentrum Jülich , Jülich 52425 , Germany
| |
Collapse
|
27
|
Sun Z, Wang X, Zhao Q, Zhu T. Understanding Aldose Reductase-Inhibitors interactions with free energy simulation. J Mol Graph Model 2019; 91:10-21. [PMID: 31128525 DOI: 10.1016/j.jmgm.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
Aldose Reductase (AR) reduces a variety of substrates, such as aldehydes, aldoses and corticosteroids. It is the first and rate-limiting enzyme of the polyol pathway and is an important target enzyme for diabetes-associated complications, including retinopathy, neuropathy, and nephropathy. Inhibitors targeting this enzyme are structurally different and some of them have side effects. In existing publications, computational techniques are applied to investigate the binding affinities of existing inhibitors and predicting the affinities of newly designed ligands. However, these calculations only employ coarse and approximated methods such as docking and MM/PBSA. Brute force simulations are employed to study the dynamics of the system but no converged statistics is obtained. As a result, these computations provide results not consistent with experimental values and large discrepancies exist. In the current work, we employ the enhanced sampling technique of alchemical free energy simulation to calculate the binding affinities of several ligands targeting AR. The statistical error is defined with care and the correlation in the time-series data is fully considered. The statistically optimal estimators are used to extract the free energy estimates and the predicted results are in agreement with the experimental values. Less computationally demanding end-point free energy methods are also performed to compare their efficiency with the alchemical methods. As is expected, the end-point methods are of less accuracy and reliability compared with the alchemical free energy methods. The decomposition of the free energy difference in each alchemical transformation into the enthalpic and entropic components gives further insights on the thermodynamics. The enthalpy-entropy compensation is observed in this case. As the structural data obtained from experiments are only snapshots and more details are needed to understand the dynamics of the protein-ligand system, the conformational ensemble is analyzed. We identify important residues involved in the protein-ligand binding case and short-lived interactions formed due to fluctuations in the conformational ensemble. The current work shed light on the atomic detailed understanding of the dynamics of AR-inhibitors interactions.
Collapse
Affiliation(s)
- Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China; Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, 52425, Germany.
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China; Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| | - Qianqian Zhao
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, 52425, Germany; College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Tong Zhu
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
28
|
Sun Z, Wang X, Zhang JZ. Determination of binding affinities of 3-Hydroxy-3-Methylglutaryl Coenzyme A reductase inhibitors from free energy calculation. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Wang X, Sun Z. Understanding PIM-1 kinase inhibitor interactions with free energy simulation. Phys Chem Chem Phys 2019; 21:7544-7558. [PMID: 30895980 DOI: 10.1039/c9cp00070d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The proviral integration site of the Moloney leukemia virus (PIM) family includes three homologous members. PIM-1 kinase is an important target in effective therapeutic interventions of lymphomas, prostate cancer and leukemia. In the current work, we performed free energy calculations to calculate the binding affinities of several inhibitors targeting this protein. The alchemical method with integration and perturbation-based estimators and the end-point methods were compared. The computational results indicated that the alchemical method can accurately predict the binding affinities, while the end-point methods give relatively unreliable predictions. Decomposing the free energy difference into enthalpic and entropic components with MBAR reweighting enabled us to investigate the detailed thermodynamic parameters with which the entropy-enthalpy compensation in this protein-ligand binding case is identified. We then studied the conformational ensemble, and the important protein-ligand interactions were identified. The current work sheds light on the understanding of the PIM-1-kinase-inhibitor interactions at the atomic level and will be useful in the further development of potential drugs.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | |
Collapse
|
30
|
Wang X, He Q, Sun Z. BAR-based multi-dimensional nonequilibrium pulling for indirect construction of a QM/MM free energy landscape. Phys Chem Chem Phys 2019; 21:6672-6688. [PMID: 30855611 DOI: 10.1039/c8cp07012a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Construction of free energy landscapes at the quantum mechanics (QM) level is computationally demanding. As shown in previous studies, by employing an indirect scheme (i.e. constructing a thermodynamic cycle connecting QM states via an alchemical pathway), simulations are converged with much less computational burden. The indirect scheme makes QM/molecular mechanics (MM) free energy simulation orders of magnitude faster than the direct QM/MM schemes. However, the indirect QM/MM simulations were mostly equilibrium sampling based and the nonequilibrium methods were merely exploited in one-dimensional alchemical QM/MM end-state correction at two end states. In this work, we represent a multi-dimensional nonequilibrium pulling scheme for indirect QM/MM free energy simulations, where the whole free energy simulation is performed only with nonequilibrium methods. The collective variable (CV) space we explore is a combination of one alchemical CV and one physically meaningful CV. The current nonequilibrium indirect QM/MM simulation method can be seen as the generalization of equilibrium perturbation based indirect QM/MM methods. The test systems include one backbone dihedral case and one distance case. The two cases are significantly different in size, enabling us to investigate the dependence of the speedup of the indirect scheme on the size of the system. It is shown that the speedup becomes larger when the size of the system becomes larger, which is consistent with the scaling behavior of QM Hamiltonians.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
31
|
Wang X, Tu X, Deng B, Zhang JZH, Sun Z. BAR-based optimum adaptive steered MD for configurational sampling. J Comput Chem 2019; 40:1270-1289. [PMID: 30762879 DOI: 10.1002/jcc.25784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/05/2018] [Accepted: 01/06/2019] [Indexed: 11/08/2022]
Abstract
The equilibrium and nonequilibrium adaptive alchemical free energy simulation methods optimum Bennett's acceptance ratio and optimum crooks' equation (OCE), based on the statistically optimal bidirectional reweighting estimator named Bennett's Acceptance Ratio or Crooks' equation, perform initial sampling in the staging alchemical transformation and then determine the importance rank of different states via the time-derivative of the variance. The method is proven to give speedups compared with the equal time rule. In the current work, we extend the time derivative of variance guided adaptive sampling method to the configurational space, falling in the term of steered MD (SMD). The SMD approach biasing physically meaningful collective variable (CV) such as one dihedral or one distance to pulling the system from one conformational state to another. By minimizing the variance of the free energy differences along the pathway in an optimized way, a new type of adaptive SMD (ASMD) is introduced. As exhibits in the alchemical case, this adaptive sampling method outperforms the traditional equal-time SMD in nonequilibrium stratification. Also, the method gives much more efficient calculation of potential of mean force than the selection criterion-based ASMD scheme, which is proven to be more efficient than traditional SMD. The OCE workflow is periodicity-of-CV dependent while ASMD is not. The performance is demonstrated in a dihedral flipping case and two distance pulling cases, accounting for periodic and nonperiodic CVs, respectively. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.,Institute of Computational Science, Università della Svizzera italiana (USI), CH-6900, Lugano, Ticino, Switzerland
| | - Xingzhao Tu
- Institute of Organic Chemistry, University of Leipzig, Leipzig 04103, Germany
| | - Boming Deng
- Laboratory of Oil Analysis, Beijing Hangfengkewei Equipment Technology Co., Ltd., Beijing 100141, China
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York, 10003
| | - Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.,Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Juelich, Jülich 52425, Germany
| |
Collapse
|
32
|
Gomez A, Vöhringer-Martinez E. Conformational sampling and polarization of Asp26 in pK a calculations of thioredoxin. Proteins 2019; 87:467-477. [PMID: 30714651 DOI: 10.1002/prot.25668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/21/2019] [Accepted: 01/31/2019] [Indexed: 12/28/2022]
Abstract
Thioredoxin is a protein that has been used as model system by various computational methods to predict the pKa of aspartate residue Asp26 which is 3.5 units higher than a solvent exposed one (eg, Asp20). Here, we use extensive atomistic molecular dynamics simulations of two different protonation states of Asp26 in combination with conformational analysis based on RMSD clustering and principle component analysis to identify representative conformations of the protein in solution. For each conformation, the Gibbs free energy of proton transfer between Asp26 and Asp20, which is fully solvated in a loop region of the protein, is calculated with the Amber99sb force field in alchemical transformations. The varying polarization of the two residues in different molecular environments and protonation states is described by Hirshfeld-I (HI) atomic charges obtained from the averaged polarized electron density. Our results show that the Gibbs free energy of proton transfer is dependent on the protein conformation, the proper sampling of the neighboring Lys57 residue orientations and on water molecules entering the hydrophobic cavity upon deprotonating Asp26. The inclusion of the polarization of both aspartate residues in the free energy cycle by HI atomic charges corrects the results from the non-polarizable force field and reproduces the experimental ΔpKa value of Asp26.
Collapse
Affiliation(s)
- Aharon Gomez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
33
|
Thermodynamics of helix formation in small peptides of varying length in vacuo, in implicit solvent, and in explicit solvent. J Mol Model 2018; 25:3. [DOI: 10.1007/s00894-018-3886-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
34
|
Li Z, Zhang X, Wang Q, Li C, Zhang N, Zhang X, Xu B, Ma B, Schrader TE, Coates L, Kovalevsky A, Huang Y, Wan Q. Understanding the pH-Dependent Reaction Mechanism of a Glycoside Hydrolase Using High-Resolution X-ray and Neutron Crystallography. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhihong Li
- College of Science, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Xiaoshuai Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Qingqing Wang
- College of Science, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Chunran Li
- College of Science, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Nianying Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Xinkai Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Birui Xu
- College of Science, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Baoliang Ma
- College of Science, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Tobias E. Schrader
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Garching 85747, Germany
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yandong Huang
- College of Computer Engineering, Jimei University, Xiamen 361021, People’s Republic of China
| | - Qun Wan
- College of Science, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
35
|
Heidari M, Kremer K, Cortes-Huerto R, Potestio R. Spatially Resolved Thermodynamic Integration: An Efficient Method To Compute Chemical Potentials of Dense Fluids. J Chem Theory Comput 2018; 14:3409-3417. [DOI: 10.1021/acs.jctc.8b00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Maziar Heidari
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Raffaello Potestio
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Physics Department, University of Trento, via Sommarive 14 Povo, Trento 38123, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy
| |
Collapse
|
36
|
Wang X, Tu X, Zhang JZH, Sun Z. BAR-based optimum adaptive sampling regime for variance minimization in alchemical transformation: the nonequilibrium stratification. Phys Chem Chem Phys 2018; 20:2009-2021. [PMID: 29299568 DOI: 10.1039/c7cp07573a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following the previously proposed equilibrate-state sampling based adaptive sampling regime Optimum Bennett Acceptance Ratio (OBAR), we introduce its nonequilibrium extension, the Optimum Crooks' Equation (OCE) in the current work. The efficiency of the NonEquilibrium Work (NEW) stratification is improved by adaptively manipulating the significance of each nonequilibrium realization followed by importance sampling. As is exhibited in the equilibrium case, the nonequilibrium extension outperforms the simple equal time rule used in nonequilibrium stratification in the sense of minimizing the total variance of the free energy estimate. The speedup of this non-equal time rule is more than 1-fold. The Time Derivative of total Variance (TDV) proposed for the OBAR criterion is extended to determine the importance of each nonequilibrium transformation, which is linearly dependent on the variance. The TDV in the nonequilibrium case gives a totally different importance rank from the standard errors of the free energy differences and OBAR TDV due to the duration of nonequilibrium pulling being added into the OCE equation. The performance of the OCE workflow is demonstrated in the solvation of several small molecules with a series of lambda increments and relaxation times between successive perturbations. To the best of our knowledge, such a nonequilibrium adaptive sampling regime in alchemical transformation is unprecedented.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | | | | | | |
Collapse
|