1
|
Liu Z, Qiu WR, Liu Y, Yan H, Pei W, Zhu YH, Qiu J. A comprehensive review of computational methods for Protein-DNA binding site prediction. Anal Biochem 2025; 703:115862. [PMID: 40209920 DOI: 10.1016/j.ab.2025.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Accurately identifying protein-DNA binding sites is essential for understanding the molecular mechanisms underlying biological processes, which in turn facilitates advancements in drug discovery and design. While biochemical experiments provide the most accurate way to locate DNA-binding sites, they are generally time-consuming, resource-intensive, and expensive. There is a pressing need to develop computational methods that are both efficient and accurate for DNA-binding site prediction. This study thoroughly reviews and categorizes major computational approaches for predicting DNA-binding sites, including template detection, statistical machine learning, and deep learning-based methods. The 14 state-of-the-art DNA-binding site prediction models have been benchmarked on 136 non-redundant proteins, where the deep learning-based, especially pre-trained large language model-based, methods achieve superior performance over the other two categories. Applications of these DNA-binding site prediction methods are also involved.
Collapse
Affiliation(s)
- Zi Liu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Wang-Ren Qiu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yan Liu
- Department of Computer Science, Yangzhou University, 196 Huayang West Road, Yangzhou, 225100, China
| | - He Yan
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, 159 Longpanlu Road, Nanjing, 210037, China
| | - Wenyi Pei
- Geriatric Department, Shanghai Baoshan District Wusong Central Hospital, 101 Tongtai North Road, Shanghai, 200940, China.
| | - Yi-Heng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China.
| | - Jing Qiu
- Information Department, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Wu J, Liu Y, Zhang Y, Wang X, Yan H, Zhu Y, Song J, Yu DJ. Identifying Protein-Nucleotide Binding Residues via Grouped Multi-task Learning and Pre-trained Protein Language Models. J Chem Inf Model 2025; 65:1040-1052. [PMID: 39788787 DOI: 10.1021/acs.jcim.4c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The accurate identification of protein-nucleotide binding residues is crucial for protein function annotation and drug discovery. Numerous computational methods have been proposed to predict these binding residues, achieving remarkable performance. However, due to the limited availability and high variability of nucleotides, predicting binding residues for diverse nucleotides remains a significant challenge. To address these, we propose NucGMTL, a new grouped deep multi-task learning approach designed for predicting binding residues of all observed nucleotides in the BioLiP database. NucGMTL leverages pre-trained protein language models to generate robust sequence embedding and incorporates multi-scale learning along with scale-based self-attention mechanisms to capture a broader range of feature dependencies. To effectively harness the shared binding patterns across various nucleotides, deep multi-task learning is utilized to distill common representations, taking advantage of auxiliary information from similar nucleotides selected based on task grouping. Performance evaluation on benchmark data sets shows that NucGMTL achieves an average area under the Precision-Recall curve (AUPRC) of 0.594, surpassing other state-of-the-art methods. Further analyses highlight that the predominant advantage of NucGMTL can be reflected by its effective integration of grouped multi-task learning and pre-trained protein language models. The data set and source code are freely accessible at: https://github.com/jerry1984Y/NucGMTL.
Collapse
Affiliation(s)
- Jiashun Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Liu
- School of Information Engineering, Yangzhou University, Yangzhou 225100, China
| | - Ying Zhang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyu Wang
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - He Yan
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China
| | - Yiheng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Hao S, Li CY, Hu X, Feng Z, Zhang G, Yang C, Hu H. S-DCNN: prediction of ATP binding residues by deep convolutional neural network based on SMOTE. Front Genet 2025; 15:1513201. [PMID: 39834546 PMCID: PMC11744016 DOI: 10.3389/fgene.2024.1513201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Background The realization of many protein functions requires binding with ligands. As a significant protein-binding ligand, ATP plays a crucial role in various biological processes. Currently, the precise prediction of ATP binding residues remains challenging. Methods Based on the sequence information, this paper introduces a method called S-DCNN for predicting ATP binding residues, utilizing a deep convolutional neural network (DCNN) enhanced with the synthetic minority over-sampling technique (SMOTE). Results The incorporation of additional feature parameters such as dihedral angles, energy, and propensity factors into the standard parameter set resulted in a significant enhancement in prediction accuracy on the ATP-289 dataset. The S-DCNN achieved the highest Matthews correlation coefficient value of 0.5031 and an accuracy rate of 97.06% on an independent test set. Furthermore, when applied to the ATP-221 and ATP-388 datasets for validation, the S-DCNN outperformed existing methods on ATP-221 and performed comparably to other methods on ATP-388 during independent testing. Conclusion Our experimental results underscore the efficacy of the S-DCNN in accurately predicting ATP binding residues, establishing it as a potent tool in the prediction of ATP binding residues.
Collapse
Affiliation(s)
- Sixi Hao
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
- School of Mathematics and Statistics, Xinyang College, Xinyang, China
| | - Cai-Yan Li
- School of Computer Science and Technology/Baotou Medical College, Baotou, China
| | - Xiuzhen Hu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Zhenxing Feng
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Gaimei Zhang
- Department of Obstetrics and Gynecology, Hohhot First Hospital, Hohhot, China
| | - Caiyun Yang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Huimin Hu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| |
Collapse
|
4
|
Alnuqaydan AM. Riddelline from Tamarix articulate as a potential anti-bacterial lead compound for novel antibiotics discovery: A comprehensive computational and toxicological studies. PLoS One 2024; 19:e0310319. [PMID: 39541292 PMCID: PMC11563397 DOI: 10.1371/journal.pone.0310319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 11/16/2024] Open
Abstract
Tamarix articulate from the Tamaricaece family is a halophytic plant. This plant is commonly called Athal or Tamarix in different Arabic and Asian countries. Due to the high load of polyphenolic phytochemicals, the plant has been used as a therapeutic option against several diseases for decades. The plant is an anti-inflammatory, anti-bacterial, anti-viral, anti-cancer, anti-oxidant, and anti-inflammatory. In this work, the 222 phytochemical compounds of T. articulate from our previous study are used in different bioinformatic and biophysics techniques to explore their biological potency against different anti-bacterial, anti-cancer and anti-viral targets. By doing so, it was found that Riddelline ranked as the best binding molecule of biological macromolecules selected herein in particular the bacterial targets. The binding energy value of the compound for the KdsA enzyme was -14.64 kcal/mol, KdsB (-13.09 kcal/mol), MurC (-13.67 kcal/mol), MurD (-13.54 kcal/mol), MurF (-14.20 kcal/mol), Polo-like kinase 1 (Plk1) (-12.34 kcal/mol), Bcl-2 protein (-13.39 kcal/mol), SARS-CoV-2 main protease enzyme (-12.67 kcal/mol), and Human T cell leukemia virus protease (-13.67 kcal/mol). The mean Rg value of KdsA-Riddelline complex and KdsA-FPE complex is 32.67 Å, and average RMSD of KdsA-Riddelline complex and KdsA-FPE complex is 2.31 Å, respectively. The binding energy complexes was found to be dominated by van der Waals (-71.98 kcal/mol for KdsA-Riddelline complex and -65.09 kcal/mol for KdsA-FPE complex). The lead compound was also unveiled to show favorable druglike properties and pharmacokinetics. Together, the data suggest the good anti-bacterial activities of the T. articulate phytochemicals and thus can be subjected to experimental in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Abdullah M. Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
5
|
Alawam AS, M Alneghery L, Alwethaynani MS, Alamri MA. A hierarchical approach towards identification of novel inhibitors against L, D-transpeptidase YcbB as an anti-bacterial therapeutic target. J Biomol Struct Dyn 2024:1-11. [PMID: 38411016 DOI: 10.1080/07391102.2024.2322619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024]
Abstract
The bacterial cell wall, being a vital component for cell viability, is regarded as a promising drug target. The L, D-Transpeptidase YcbB enzyme has been implicated for a significant role in cell wall polymers cross linking during typhoid toxin release, β-lactam resistance and outer membrane defect rescue. These observations have been recorded in different bacterial pathogens such as Salmonella Typhimurium, Citrobacter rodentium, and Salmonella typhi. In this work, we have shown structure based virtual screening of diverse natural and synthetic drug libraries against the enzyme and revealed three compounds as LAS_32135590, LAS_34036730 and LAS-51380924. These compounds showed highly stable energies and the findings are very competitive with the control molecule ((1RG or (4 R,5S)-3-({(3S,5S)-5-[(3-carboxyphenyl)carbamoyl]pyrrolidin-3-yl}sulfanyl)-5-[(1S,2R)-1-formyl-2-hydroxypropyl]-4-methyl-4,5-dihydro-1H-pyrrole-2-carboxylic acid or ertapenem)) used. Compared to control (which has binding energy score of -11.63 kcal/mol), the compounds showed better binding energy. The binding energy score of LAS_32135590, LAS_34036730 and LAS-51380924 is -12.63 kcal/mol, -12.22 kcal/mol and -12.10 kcal/mol, respectively. Further, the docked snapshot of the lead compounds and control were investigated for stability under time dependent dynamics environment. All the three leads complex and control system showed significant equilibrium (mean RMSD < 3 Å) both in term of intermolecular docked conformation and binding interactions network. Further validation on the complex's stability was acquired from the end-state MMPB/GBSA analysis that observed greater contribution from van der Waals forces and electrostatic energy while less contribution was noticed from solvation part. The compounds were also showed good drug-likeness and are non-toxic and non-mutagenic. In short, the compounds can be used in experimental testing's and might be subjected to structure modification to get better results.
Collapse
Affiliation(s)
- Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Lina M Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Maher S Alwethaynani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
6
|
Zhu YH, Liu Z, Liu Y, Ji Z, Yu DJ. ULDNA: integrating unsupervised multi-source language models with LSTM-attention network for high-accuracy protein-DNA binding site prediction. Brief Bioinform 2024; 25:bbae040. [PMID: 38349057 PMCID: PMC10939370 DOI: 10.1093/bib/bbae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Efficient and accurate recognition of protein-DNA interactions is vital for understanding the molecular mechanisms of related biological processes and further guiding drug discovery. Although the current experimental protocols are the most precise way to determine protein-DNA binding sites, they tend to be labor-intensive and time-consuming. There is an immediate need to design efficient computational approaches for predicting DNA-binding sites. Here, we proposed ULDNA, a new deep-learning model, to deduce DNA-binding sites from protein sequences. This model leverages an LSTM-attention architecture, embedded with three unsupervised language models that are pre-trained on large-scale sequences from multiple database sources. To prove its effectiveness, ULDNA was tested on 229 protein chains with experimental annotation of DNA-binding sites. Results from computational experiments revealed that ULDNA significantly improves the accuracy of DNA-binding site prediction in comparison with 17 state-of-the-art methods. In-depth data analyses showed that the major strength of ULDNA stems from employing three transformer language models. Specifically, these language models capture complementary feature embeddings with evolution diversity, in which the complex DNA-binding patterns are buried. Meanwhile, the specially crafted LSTM-attention network effectively decodes evolution diversity-based embeddings as DNA-binding results at the residue level. Our findings demonstrated a new pipeline for predicting DNA-binding sites on a large scale with high accuracy from protein sequence alone.
Collapse
Affiliation(s)
- Yi-Heng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Zi Liu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Liu
- School of Information Engineering, Yangzhou University, Yangzhou 225000, China
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
7
|
Guan S, Zou Q, Wu H, Ding Y. Protein-DNA Binding Residues Prediction Using a Deep Learning Model With Hierarchical Feature Extraction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2619-2628. [PMID: 35834447 DOI: 10.1109/tcbb.2022.3190933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biologically important effects occur when proteins bind to other substances, of which binding to DNA is a crucial one. Therefore, accurate identification of protein-DNA binding residues is important for further understanding of the protein-DNA interaction mechanism. Although wet-lab methods can accurately obtain the location of bound residues, it requires significant human, financial and time costs. There is thus an urgent need to develop efficient computational-based methods. Most current state-of-the-art methods are two-step approaches: the first step uses a sliding window technique to extract residue features; the second step uses each residue as an input to the model for prediction. This has a negative impact on the efficiency of prediction and ease of use. In this study, we propose a sequence-to-sequence (seq2seq) model that can input the entire protein sequence of variable length and use two modules, Transformer Encoder Block and Feature Extracting Block, for hierarchical feature extraction, where Transformer Encoder Block is used to extract global features, and then Feature Extracting Block is used to extract local features to further improve the recognition capability of the model. The comparison results on two benchmark datasets, namely PDNA-543 and PDNA-41, prove the effectiveness of our method in identifying protein-DNA binding residues.
Collapse
|
8
|
Qian Y, Shang T, Guo F, Wang C, Cui Z, Ding Y, Wu H. Identification of DNA-binding protein based multiple kernel model. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:13149-13170. [PMID: 37501482 DOI: 10.3934/mbe.2023586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
DNA-binding proteins (DBPs) play a critical role in the development of drugs for treating genetic diseases and in DNA biology research. It is essential for predicting DNA-binding proteins more accurately and efficiently. In this paper, a Laplacian Local Kernel Alignment-based Restricted Kernel Machine (LapLKA-RKM) is proposed to predict DBPs. In detail, we first extract features from the protein sequence using six methods. Second, the Radial Basis Function (RBF) kernel function is utilized to construct pre-defined kernel metrics. Then, these metrics are combined linearly by weights calculated by LapLKA. Finally, the fused kernel is input to RKM for training and prediction. Independent tests and leave-one-out cross-validation were used to validate the performance of our method on a small dataset and two large datasets. Importantly, we built an online platform to represent our model, which is now freely accessible via http://8.130.69.121:8082/.
Collapse
Affiliation(s)
- Yuqing Qian
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Tingting Shang
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Chunliang Wang
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Cui
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Hongjie Wu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
9
|
Zhang J, Zhou F, Liang X, Yang G. SCAMPER: Accurate Type-Specific Prediction of Calcium-Binding Residues Using Sequence-Derived Features. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1406-1416. [PMID: 35536812 DOI: 10.1109/tcbb.2022.3173437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding molecular mechanisms involved in calcium-protein interactions and modeling corresponding docking rely on the accurate identification of calcium-binding residues (CaBRs). The defects of experimentally annotating protein functions enhances the development of computational approaches that correctly identify calcium-binding interactions. Studies have reported that current methods severely cross-predict residues that interact with other types of molecules (e.g., nucleic acids, proteins, and small ligands) as CaBRs. In this study, a novel predictor named SCAMPER (Selective CAlciuM-binding PrEdictoR) is proposed for the accurate and specific prediction of CaBRs. SCAMPER is designed using newly compiled dataset with complete UniProt sequences and annotations, which include calcium-binding, nucleic acid-binding, protein-binding, and small ligand-binding residues. We use a novel designed two-layer scheme to perform predictions as well as penalize cross-predictions. Empirical tests on an independent test dataset reveals that the proposed method significantly outperforms state-of-the-art predictors. SCAMPER is proved to be capable of distinguishing CaBRs from different types of metal-ion binding residues. We further perform CaBRs predictions on the whole human proteome, and use the results to hypothesize calcium-binding proteins (CaBPs). The latest experimental verified CaBPs and GO analysis prove the accuracy of our predictions. We implement the proposed method and share the data at http://www.inforstation.com/webservers/SCAMPER/.
Collapse
|
10
|
Qian Y, Ding Y, Zou Q, Guo F. Multi-View Kernel Sparse Representation for Identification of Membrane Protein Types. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1234-1245. [PMID: 35857734 DOI: 10.1109/tcbb.2022.3191325] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Membrane proteins are the main undertaker of biomembrane functions and play a vital role in many biological activities of organisms. Prediction of membrane protein types has a great help in determining the function of proteins and understanding the interactions of membrane proteins. However, the biochemical experiment is expensive and not suitable for the large-scale identification of membrane protein types. Therefore, computational methods were used to improve the efficiency of biological experiments. Most existing computational methods only use a single feature of protein, or use multiple features but do not integrate these well. In our study, the protein sequence is described via three different views (features), including amino acid composition, evolutionary information and physicochemical properties of amino acids. To exploit information among all views (features), we introduce a coupling strategy for Kernel Sparse Representation based Classification (KSRC) and construct a new model called Multi-view KSRC (MvKSRC). We implement our method on 4 benchmark data sets of membrane proteins. The comparison results indicate that our method is much superior to all existing methods.
Collapse
|
11
|
Hu J, Bai YS, Zheng LL, Jia NX, Yu DJ, Zhang GJ. Protein-DNA Binding Residue Prediction via Bagging Strategy and Sequence-Based Cube-Format Feature. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3635-3645. [PMID: 34714748 DOI: 10.1109/tcbb.2021.3123828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein-DNA interactions play an important role in diverse biological processes. Accurately identifying protein-DNA binding residues is a critical but challenging task for protein function annotations and drug design. Although wet-lab experimental methods are the most accurate way to identify protein-DNA binding residues, they are time consuming and labor intensive. There is an urgent need to develop computational methods to rapidly and accurately predict protein-DNA binding residues. In this study, we propose a novel sequence-based method, named PredDBR, for predicting DNA-binding residues. In PredDBR, for each query protein, its position-specific frequency matrix (PSFM), predicted secondary structure (PSS), and predicted probabilities of ligand-binding residues (PPLBR) are first generated as three feature sources. Secondly, for each feature source, the sliding window technique is employed to extract the matrix-format feature of each residue. Then, we design two strategies, i.e., square root (SR) and average (AVE), to separately transform PSFM-based and two predicted feature source-based, i.e., PSS-based and PPLBR-based, matrix-format features of each residue into three corresponding cube-format features. Finally, after serially combining the three cube-format features, the ensemble classifier is generated via applying bagging strategy to multiple base classifiers built by the framework of 2D convolutional neural network. The computational experimental results demonstrate that the proposed PredDBR achieves an average overall accuracy of 93.7% and a Mathew's correlation coefficient of 0.405 on two independent validation datasets and outperforms several state-of-the-art sequenced-based protein-DNA binding residue predictors. The PredDBR web-server is available at https://jun-csbio.github.io/PredDBR/.
Collapse
|
12
|
Navid A, Ahmad S, Sajjad R, Raza S, Azam SS. Structure Based in Silico Screening Revealed a Potent Acinetobacter Baumannii Ftsz Inhibitor From Asinex Antibacterial Library. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3008-3018. [PMID: 34375286 DOI: 10.1109/tcbb.2021.3103899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The superbug Acinetobacter baumannii is an increasingly prevalent pathogen of the intensive care units where its treatment is challenging. The identification of newer drug targets and the development of propitious therapeutics against this pathogen is of utmost importance. A drug target, cell division enzyme (FtsZ), involved in A. baumannii cytokinesis is a promising avenue for antibacterial therapy. Structure based virtual screening illustrated a lead-like molecule from Asinex antibacterial library to have the best binding affinity for the FtsZ active pocket. Computational pharmacokinetics predicted the compound to have the safest pharmacokinetics profile, thus maximizing the chances of the molecule reaching the market with enhanced efficacy and lesser toxicity. Molecular dynamics simulations in an aqueous environment revealed the flexibility of protein loop regions, and upward extension followed by the backward movement of the inhibitor N, N-dimethylpyridazin-3-amine ring on its axis. The active pocket residue Thr310 demonstrated to play significant role in inhibitor binding. The binding free energy predicted by MM/GBSA and MM/PBSA reflected system stability with a total value of -62.15 kcal/mol and -10.60 kcal/mol, respectively. The absolute binding free energy estimated by WaterSwap was -16 kcal/mol that validates and affirms complex stability. The inhibitor represents a promising scaffold as a lead optimization for the FtsZ enzyme.
Collapse
|
13
|
Xu X, Xuan P, Zhang T, Chen B, Sheng N. Inferring Drug-Target Interactions Based on Random Walk and Convolutional Neural Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2294-2304. [PMID: 33729947 DOI: 10.1109/tcbb.2021.3066813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Computational strategies for identifying new drug-target interactions (DTIs) can guide the process of drug discovery, reduce the cost and time of drug development, and thus promote drug development. Most recently proposed methods predict DTIs via integration of heterogeneous data related to drugs and proteins. However, previous methods have failed to deeply integrate these heterogeneous data and learn deep feature representations of multiple original similarities and interactions related to drugs and proteins. We therefore constructed a heterogeneous network by integrating a variety of connection relationships about drugs and proteins, including drugs, proteins, and drug side effects, as well as their similarities, interactions, and associations. A DTI prediction method based on random walk and convolutional neural network was proposed and referred to as DTIPred. DTIPred not only takes advantage of various original features related to drugs and proteins, but also integrates the topological information of heterogeneous networks. The prediction model is composed of two sides and learns the deep feature representation of a drug-protein pair. On the left side, random walk with restart is applied to learn the topological vectors of drug and protein nodes. The topological representation is further learned by the constructed deep learning frame based on convolutional neural network. The right side of the model focuses on integrating multiple original similarities and interactions of drugs and proteins to learn the original representation of the drug-protein pair. The results of cross-validation experiments demonstrate that DTIPred achieves better prediction performance than several state-of-the-art methods. During the validation process, DTIPred can retrieve more actual drug-protein interactions within the top part of the predicted results, which may be more helpful to biologists. In addition, case studies on five drugs further demonstrate the ability of DTIPred to discover potential drug-protein interactions.
Collapse
|
14
|
Ma Z, Guo A, Jing P. Advances in dietary proteins binding with co-existed anthocyanins in foods: Driving forces, structure-affinity relationship, and functional and nutritional properties. Crit Rev Food Sci Nutr 2022; 63:10792-10813. [PMID: 35748363 DOI: 10.1080/10408398.2022.2086211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins, which are the labile flavonoid pigments widely distributed in many fruits, vegetables, cereal grains, and flowers, are receiving intensive interest for their potential health benefits. Proteins are important food components from abundant sources and present high binding affinity for small dietary compounds, e.g., anthocyanins. Protein-anthocyanin interactions might occur during food processing, ingestion, digestion, and bioutilization, leading to significant changes in the structure and properties of proteins and anthocyanins. Current knowledge of protein-anthocyanin interactions and their contributions to functions and bioactivities of anthocyanin-containing foods were reviewed. Binding characterization of dietary protein-anthocyanins complexes is outlined. Advances in understanding the structure-affinity relationship of dietary protein-anthocyanin interaction are critically discussed. The associated properties of protein-anthocyanin complexes are considered in an evaluation of functional and nutritional values.
Collapse
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Guo
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Ranganathan S, Mahesh S, Suresh S, Nagarajan A, Z Sen T, M Yennamalli R. Experimental and computational studies of cellulases as bioethanol enzymes. Bioengineered 2022; 13:14028-14046. [PMID: 35730402 PMCID: PMC9345620 DOI: 10.1080/21655979.2022.2085541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bioethanol industries and bioprocesses have many challenges that constantly impede commercialization of the end product. One of the bottlenecks in the bioethanol industry is the challenge of discovering highly efficient catalysts that can improve biomass conversion. The current promising bioethanol conversion catalysts are microorganism-based cellulolytic enzymes, but lack optimization for high bioethanol conversion, due to biological and other factors. A better understanding of molecular underpinnings of cellulolytic enzyme mechanisms and significant ways to improve them can accelerate the bioethanol commercial production process. In order to do this, experimental methods are the primary choice to evaluate and characterize cellulase’s properties, but they are time-consuming and expensive. A time-saving, complementary approach involves computational methods that evaluate the same properties and improves our atomistic-level understanding of enzymatic mechanism of action. Theoretical methods in many cases have proposed research routes for subsequent experimental testing and validation, reducing the overall research cost. Having a plethora of tools to evaluate cellulases and the yield of the enzymatic process will aid in planning more optimized experimental setups. Thus, there is a need to connect the computational evaluation methods with the experimental methods to overcome the bottlenecks in the bioethanol industry. This review discusses various experimental and computational methods and their use in evaluating the multiple properties of cellulases.
Collapse
Affiliation(s)
- Shrivaishnavi Ranganathan
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Sankar Mahesh
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Sruthi Suresh
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Ayshwarya Nagarajan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Taner Z Sen
- S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Genetics Research UnitU., California, USA
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| |
Collapse
|
16
|
Wang W, Zhang Y, Liu D, Zhang H, Wang X, Zhou Y. Prediction of DNA-Binding Protein–Drug-Binding Sites Using Residue Interaction Networks and Sequence Feature. Front Bioeng Biotechnol 2022; 10:822392. [PMID: 35519609 PMCID: PMC9065339 DOI: 10.3389/fbioe.2022.822392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Identification of protein–ligand binding sites plays a critical role in drug discovery. However, there is still a lack of targeted drug prediction for DNA-binding proteins. This study aims at the binding sites of DNA-binding proteins and drugs, by mining the residue interaction network features, which can describe the local and global structure of amino acids, combined with sequence feature. The predictor of DNA-binding protein–drug-binding sites is built by employing the Extreme Gradient Boosting (XGBoost) model with random under-sampling. We found that the residue interaction network features can better characterize DNA-binding proteins, and the binding sites with high betweenness value and high closeness value are more likely to interact with drugs. The model shows that the residue interaction network features can be used as an important quantitative indicator of drug-binding sites, and this method achieves high predictive performance for the binding sites of DNA-binding protein–drug. This study will help in drug discovery research for DNA-binding proteins.
Collapse
Affiliation(s)
- Wei Wang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Wei Wang, ; Dong Liu, ; Yun Zhou,
| | - Yu Zhang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
| | - Dong Liu
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Wei Wang, ; Dong Liu, ; Yun Zhou,
| | - HongJun Zhang
- Computer Science and Technology, Anyang University, Anyang, China
| | - XianFang Wang
- Computer Science and Technology, Henan Institute of Technology, Xinxiang, China
| | - Yun Zhou
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Wei Wang, ; Dong Liu, ; Yun Zhou,
| |
Collapse
|
17
|
A Comprehensive Review of Computation-Based Metal-Binding Prediction Approaches at the Residue Level. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8965712. [PMID: 35402609 PMCID: PMC8989566 DOI: 10.1155/2022/8965712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022]
Abstract
Clear evidence has shown that metal ions strongly connect and delicately tune the dynamic homeostasis in living bodies. They have been proved to be associated with protein structure, stability, regulation, and function. Even small changes in the concentration of metal ions can shift their effects from natural beneficial functions to harmful. This leads to degenerative diseases, malignant tumors, and cancers. Accurate characterizations and predictions of metalloproteins at the residue level promise informative clues to the investigation of intrinsic mechanisms of protein-metal ion interactions. Compared to biophysical or biochemical wet-lab technologies, computational methods provide open web interfaces of high-resolution databases and high-throughput predictors for efficient investigation of metal-binding residues. This review surveys and details 18 public databases of metal-protein binding. We collect a comprehensive set of 44 computation-based methods and classify them into four categories, namely, learning-, docking-, template-, and meta-based methods. We analyze the benchmark datasets, assessment criteria, feature construction, and algorithms. We also compare several methods on two benchmark testing datasets and include a discussion about currently publicly available predictive tools. Finally, we summarize the challenges and underlying limitations of the current studies and propose several prospective directions concerning the future development of the related databases and methods.
Collapse
|
18
|
Lu W, Shen J, Zhang Y, Wu H, Qian Y, Chen X, Fu Q. Identifying Membrane Protein Types Based on Lifelong Learning With Dynamically Scalable Networks. Front Genet 2022; 12:834488. [PMID: 35371189 PMCID: PMC8964460 DOI: 10.3389/fgene.2021.834488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Membrane proteins are an essential part of the body's ability to maintain normal life activities. Further research into membrane proteins, which are present in all aspects of life science research, will help to advance the development of cells and drugs. The current methods for predicting proteins are usually based on machine learning, but further improvements in prediction effectiveness and accuracy are needed. In this paper, we propose a dynamic deep network architecture based on lifelong learning in order to use computers to classify membrane proteins more effectively. The model extends the application area of lifelong learning and provides new ideas for multiple classification problems in bioinformatics. To demonstrate the performance of our model, we conducted experiments on top of two datasets and compared them with other classification methods. The results show that our model achieves high accuracy (95.3 and 93.5%) on benchmark datasets and is more effective compared to other methods.
Collapse
Affiliation(s)
- Weizhong Lu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China.,Suzhou Key Laboratory of Virtual Reality Intelligent Interaction and Application Technology, Suzhou University of Science and Technology, Suzhou, China.,Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou, China
| | - Jiawei Shen
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yu Zhang
- Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China.,Suzhou Key Laboratory of Virtual Reality Intelligent Interaction and Application Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Yuqing Qian
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Xiaoyi Chen
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Qiming Fu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
19
|
Boumezber S, Yelekçi K. Screening of novel and selective inhibitors for neuronal nitric oxide synthase (nNOS) via structure-based drug design techniques. J Biomol Struct Dyn 2022; 41:3607-3629. [PMID: 35322764 DOI: 10.1080/07391102.2022.2054471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
NO, or nitric oxide, is produced by a family of enzymes called nitric oxide synthase (NOS) from L-arginine. NO regulates many physiological functions such as smooth muscle relaxation, immune defense, and memory function. The overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is implicated in neurodegeneration and neuropathic pain, making nNOS inhibition a promising therapeutic approach. Many developed nNOS inhibitors, generally L-arginine mimetics, have some issues in selectivity and bioavailability. According to earlier studies, targeting nNOS has the advantage of decreasing excess NO in the brain while avoiding the negative consequences of inhibiting the two isozymes: endothelial NOS (eNOS) and inducible NOS (iNOS). This study applied structure-based virtual screening, molecular docking, and molecular dynamics simulations to design potent and selective inhibitors against nNOS over related isoforms (eNOS and iNOS) using human X-ray crystal structures of the NOS isoforms. It was discovered that some compounds displayed a very good inhibitory potency for hnNOS and moderate selectivity for the other isozymes, eNOS and iNOS, in addition to good solubility and desirable physiochemical properties. The compounds which showed good stability and selectivity with nNOS, such as ZINC000013485422, can be interesting and informative guidance for designing more potent human nNOS inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarah Boumezber
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
20
|
Zhao Q, Ma J, Wang Y, Xie F, Lv Z, Xu Y, Shi H, Han K. Mul-SNO: A novel prediction tool for S-nitrosylation sites based on deep learning methods. IEEE J Biomed Health Inform 2021; 26:2379-2387. [PMID: 34762593 DOI: 10.1109/jbhi.2021.3123503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein s-nitrosylation (SNO is one of the most important post-translational modifications and is formed by the covalent modification of nitric oxide and cysteine residues. Extensive studies have shown that SNO plays a pivotal role in the plant immune response and treating various major human diseases. In recent years, SNO sites have become a hot research topic. Traditional biochemical methods for SNO site identification are time-consuming and costly. In this study, we developed an economical and efficient SNO site prediction tool named Mul-SNO. Mul-SNO ensembled current popular and powerful deep learning model bidirectional long short-term memory (BiLSTM and bidirectional encoder representations from Transformers (BERT . Compared with existing state-of-the-art methods, Mul-SNO obtained better ACC of 0.911 and 0.796 based on 10-fold cross-validation and independent data sets, respectively. The prediction server can be obtained for free at http://lab.malab.cn/~mjq/Mul-SNO/.
Collapse
|
21
|
Xuan P, Fan M, Cui H, Zhang T, Nakaguchi T. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction. Brief Bioinform 2021; 23:6412398. [PMID: 34718408 DOI: 10.1093/bib/bbab453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 10/02/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Identifying proteins that interact with drugs plays an important role in the initial period of developing drugs, which helps to reduce the development cost and time. Recent methods for predicting drug-protein interactions mainly focus on exploiting various data about drugs and proteins. These methods failed to completely learn and integrate the attribute information of a pair of drug and protein nodes and their attribute distribution. RESULTS We present a new prediction method, GVDTI, to encode multiple pairwise representations, including attention-enhanced topological representation, attribute representation and attribute distribution. First, a framework based on graph convolutional autoencoder is constructed to learn attention-enhanced topological embedding that integrates the topology structure of a drug-protein network for each drug and protein nodes. The topological embeddings of each drug and each protein are then combined and fused by multi-layer convolution neural networks to obtain the pairwise topological representation, which reveals the hidden topological relationships between drug and protein nodes. The proposed attribute-wise attention mechanism learns and adjusts the importance of individual attribute in each topological embedding of drug and protein nodes. Secondly, a tri-layer heterogeneous network composed of drug, protein and disease nodes is created to associate the similarities, interactions and associations across the heterogeneous nodes. The attribute distribution of the drug-protein node pair is encoded by a variational autoencoder. The pairwise attribute representation is learned via a multi-layer convolutional neural network to deeply integrate the attributes of drug and protein nodes. Finally, the three pairwise representations are fused by convolutional and fully connected neural networks for drug-protein interaction prediction. The experimental results show that GVDTI outperformed other seven state-of-the-art methods in comparison. The improved recall rates indicate that GVDTI retrieved more actual drug-protein interactions in the top ranked candidates than conventional methods. Case studies on five drugs further confirm GVDTI's ability in discovering the potential candidate drug-related proteins. CONTACT zhang@hlju.edu.cn Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Mengsi Fan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| |
Collapse
|
22
|
Ding Y, Yang C, Tang J, Guo F. Identification of protein-nucleotide binding residues via graph regularized k-local hyperplane distance nearest neighbor model. APPL INTELL 2021. [DOI: 10.1007/s10489-021-02737-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Zhang J, Zhang Z, Pu L, Tang J, Guo F. AIEpred: An Ensemble Predictive Model of Classifier Chain to Identify Anti-Inflammatory Peptides. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1831-1840. [PMID: 31985437 DOI: 10.1109/tcbb.2020.2968419] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anti-inflammatory peptides (AIEs) have recently emerged as promising therapeutic agent for treatment of various inflammatory diseases, such as rheumatoid arthritis and Alzheimer's disease. Therefore, detecting the correlation between amino acid sequence and its anti-inflammatory property is of great importance for the discovery of new AIEs. To address this issue, we propose a novel prediction tool for accurate identification of peptides as anti-inflammatory epitopes or non anti-inflammatory epitopes. Most of all, we encode the original peptide sequence for better mining and exploring the information and patterns, based on the three feature representations as amino acid contact, position specific scoring matrix, physicochemical property. At the same time, we exploit several feature extraction models and utilize one feature selection model, in order to construct many base classifiers from various feature representations. More specifically, we develop an effective classification model, with which we can extract and learn a set of informative features from the ensemble classifier chain model with different group of base classifiers. Furthermore, in order to test the predictive power of our model, we conduct the comparative experiments on the leave-one-out cross-validation and the independent test. It shows that our novel predictor performs great accurate for identification of AIEs as well as existing outstanding prediction tools. Source codes are available at https://github.com/guofei-tju/Ensemble-classifier-chain-model.
Collapse
|
24
|
Ding Y, Tang J, Guo F. Protein Crystallization Identification via Fuzzy Model on Linear Neighborhood Representation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1986-1995. [PMID: 31751248 DOI: 10.1109/tcbb.2019.2954826] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
X-ray crystallography is the most popular approach for analyzing protein 3D structure. However, the success rate of protein crystallization is very low (2-10 percent). To reduce the cost of time and resources, lots of computation-based methods are developed to detect the protein crystallization. Improving the accuracy of predicting protein crystallization is very important for the determination of protein structure by X-ray crystallography. At present, many machine learning methods are used to predict protein crystallization. In this article, we propose a Fuzzy Support Vector Machine based on Linear Neighborhood Representation (FSVM-LNR) to predict the crystallization propensity of proteins. Proteins are represented by three types of features (PsePSSM, PSSM-DWT, MMI-PS), and these features are serially combined and fed into FSVM-LNR. FSVM-LNR can filter outliers by membership score, which is calculated via reconstruction residuals of k nearest samples. To evaluate the performance of our predictive model, we test FSVM-LNR on the datasets of TRAIN3587, TEST3585 and TEST500. Our method achieves better Mathew's correlation coefficient (MCC) on TRAIN3587 (MCC: 0.56) and TEST3585 (MCC: 0.58). Although the performance of independent test is not the best on TEST500, FSVM-LNR also has a certain predictability (MCC: 0.70) in the identification of protein crystallization. The good performance on the datasets proves the effectiveness of our method and the better performance on large datasets further demonstrates the stability and superiority of our method.
Collapse
|
25
|
Melse O, Hecht S, Antes I. DynaBiS: A hierarchical sampling algorithm to identify flexible binding sites for large ligands and peptides. Proteins 2021; 90:18-32. [PMID: 34288078 DOI: 10.1002/prot.26182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 11/11/2022]
Abstract
Knowing the ligand or peptide binding site in proteins is highly important to guide drug discovery, but experimental elucidation of the binding site is difficult. Therefore, various computational approaches have been developed to identify potential binding sites in protein structures. However, protein and ligand flexibility are often neglected in these methods due to efficiency considerations despite the recognition that protein-ligand interactions can be strongly affected by mutual structural adaptations. This is particularly true if the binding site is unknown, as the screening will typically be performed based on an unbound protein structure. Herein we present DynaBiS, a hierarchical sampling algorithm to identify flexible binding sites for a target ligand with explicit consideration of protein and ligand flexibility, inspired by our previously presented flexible docking algorithm DynaDock. DynaBiS applies soft-core potentials between the ligand and the protein, thereby allowing a certain protein-ligand overlap resulting in efficient sampling of conformational adaptation effects. We evaluated DynaBiS and other commonly used binding site identification algorithms against a diverse evaluation set consisting of 26 proteins featuring peptide as well as small ligand binding sites. We show that DynaBiS outperforms the other evaluated methods for the identification of protein binding sites for large and highly flexible ligands such as peptides, both with a holo or apo structure used as input.
Collapse
Affiliation(s)
- Okke Melse
- TUM Center for Functional Protein Assemblies and TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Sabrina Hecht
- TUM Center for Functional Protein Assemblies and TUM School of Life Sciences, Technische Universität München, Freising, Germany.,Quattro Research, Planegg, Germany
| | - Iris Antes
- TUM Center for Functional Protein Assemblies and TUM School of Life Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
26
|
Qian Y, Jiang L, Ding Y, Tang J, Guo F. A sequence-based multiple kernel model for identifying DNA-binding proteins. BMC Bioinformatics 2021; 22:291. [PMID: 34058979 PMCID: PMC8167993 DOI: 10.1186/s12859-020-03875-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/13/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND DNA-Binding Proteins (DBP) plays a pivotal role in biological system. A mounting number of researchers are studying the mechanism and detection methods. To detect DBP, the tradition experimental method is time-consuming and resource-consuming. In recent years, Machine Learning methods have been used to detect DBP. However, it is difficult to adequately describe the information of proteins in predicting DNA-binding proteins. In this study, we extract six features from protein sequence and use Multiple Kernel Learning-based on Centered Kernel Alignment to integrate these features. The integrated feature is fed into Support Vector Machine to build predictive model and detect new DBP. RESULTS In our work, date sets of PDB1075 and PDB186 are employed to test our method. From the results, our model obtains better results (accuracy) than other existing methods on PDB1075 ([Formula: see text]) and PDB186 ([Formula: see text]), respectively. CONCLUSION Multiple kernel learning could fuse the complementary information between different features. Compared with existing methods, our method achieves comparable and best results on benchmark data sets.
Collapse
Affiliation(s)
- Yuqing Qian
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Limin Jiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, People's Republic of China
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, People's Republic of China.
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, People's Republic of China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
27
|
Guo X, Zhou W, Shi B, Wang X, Du A, Ding Y, Tang J, Guo F. An Efficient Multiple Kernel Support Vector Regression Model for Assessing Dry Weight of Hemodialysis Patients. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200614172536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Dry Weight (DW) is the lowest weight after dialysis, and patients with
lower weight usually have symptoms of hypotension and shock. Several clinical-based approaches
have been presented to assess the dry weight of hemodialysis patients. However, these traditional
methods all depend on special instruments and professional technicians.
Objective:
In order to avoid this limitation, we need to find a machine-independent way to assess dry
weight, therefore we collected some clinical influencing characteristic data and constructed a
Machine Learning-based (ML) model to predict the dry weight of hemodialysis patients.
Methods::
In this paper, 476 hemodialysis patients' demographic data, anthropometric measurements,
and Bioimpedance spectroscopy (BIS) were collected. Among them, these patients' age, sex, Body
Mass Index (BMI), Blood Pressure (BP) and Heart Rate (HR) and Years of Dialysis (YD) were
closely related to their dry weight. All these relevant data were used to enter the regression equation.
Multiple Kernel Support Vector Regression-based on Maximizes the Average Similarity (MKSVRMAS)
model was proposed to predict the dry weight of hemodialysis patients.
Result:
The experimental results show that dry weight is positively correlated with BMI and HR.
And age, sex, systolic blood pressure, diastolic blood pressure and hemodialysis time are negatively
correlated with dry weight. Moreover, the Root Mean Square Error (RMSE) of our model was
1.3817.
Conclusion:
Our proposed model could serve as a viable alternative for dry weight estimation of
hemodialysis patients, thus providing a new way for clinical practice. Our proposed model could serve as a viable alternative of dry weight estimation for hemodialysis patients,
thus providing a new way for the clinic.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214000, Wuxi, China
| | - Wei Zhou
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214000, Wuxi, China
| | - Bin Shi
- Hemodialysis Center, Northern Jiangsu People's Hospital, 225001, Yangzhou, China
| | - Xiaohua Wang
- Department of Urology, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Aiyan Du
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214000, Wuxi, China
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009, Suzhou, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, 300350, Tianjin, China
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, 300350, Tianjin, China
| |
Collapse
|
28
|
Xuan P, Zhang Y, Cui H, Zhang T, Guo M, Nakaguchi T. Integrating multi-scale neighbouring topologies and cross-modal similarities for drug-protein interaction prediction. Brief Bioinform 2021; 22:6220173. [PMID: 33839743 DOI: 10.1093/bib/bbab119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/15/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023] Open
Abstract
MOTIVATION Identifying the proteins that interact with drugs can reduce the cost and time of drug development. Existing computerized methods focus on integrating drug-related and protein-related data from multiple sources to predict candidate drug-target interactions (DTIs). However, multi-scale neighboring node sequences and various kinds of drug and protein similarities are neither fully explored nor considered in decision making. RESULTS We propose a drug-target interaction prediction method, DTIP, to encode and integrate multi-scale neighbouring topologies, multiple kinds of similarities, associations, interactions related to drugs and proteins. We firstly construct a three-layer heterogeneous network to represent interactions and associations across drug, protein, and disease nodes. Then a learning framework based on fully-connected autoencoder is proposed to learn the nodes' low-dimensional feature representations within the heterogeneous network. Secondly, multi-scale neighbouring sequences of drug and protein nodes are formulated by random walks. A module based on bidirectional gated recurrent unit is designed to learn the neighbouring sequential information and integrate the low-dimensional features of nodes. Finally, we propose attention mechanisms at feature level, neighbouring topological level and similarity level to learn more informative features, topologies and similarities. The prediction results are obtained by integrating neighbouring topologies, similarities and feature attributes using a multiple layer CNN. Comprehensive experimental results over public dataset demonstrated the effectiveness of our innovative features and modules. Comparison with other state-of-the-art methods and case studies of five drugs further validated DTIP's ability in discovering the potential candidate drug-related proteins.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Yu Zhang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| |
Collapse
|
29
|
Xu L, Jiao S, Zhang D, Wu S, Zhang H, Gao B. Identification of long noncoding RNAs with machine learning methods: a review. Brief Funct Genomics 2021; 20:174-180. [PMID: 33758917 DOI: 10.1093/bfgp/elab017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNAs with a length greater than 200 nucleotides. Studies have shown that they play an important role in many life activities. Dozens of lncRNAs have been characterized to some extent, and they are reported to be related to the development of diseases in a variety of cells. However, the biological functions of most lncRNAs are currently still unclear. Therefore, accurately identifying and predicting lncRNAs would be helpful for research on their biological functions. Due to the disadvantages of high cost and high resource-intensiveness of experimental methods, scientists have developed numerous computational methods to identify and predict lncRNAs in recent years. In this paper, we systematically summarize the machine learning-based lncRNAs prediction tools from several perspectives, and discuss the challenges and prospects for the future work.
Collapse
Affiliation(s)
- Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic
| | - Shihu Jiao
- College of Chemistry, Sichuan University, Sichuan, China
| | - Dandan Zhang
- Departments of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University
| | - Song Wu
- Preventive Treatment of Disease Centre of Qinhuangdao Hospital of Traditional Chinese Medicine
| | - Haihong Zhang
- First Affiliated Hospital of Harbin Medical University
| | - Bo Gao
- Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Yang C, Ding Y, Meng Q, Tang J, Guo F. Granular multiple kernel learning for identifying RNA-binding protein residues via integrating sequence and structure information. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Santana CA, Silveira SDA, Moraes JPA, Izidoro SC, de Melo-Minardi RC, Ribeiro AJM, Tyzack JD, Borkakoti N, Thornton JM. GRaSP: a graph-based residue neighborhood strategy to predict binding sites. Bioinformatics 2020; 36:i726-i734. [DOI: 10.1093/bioinformatics/btaa805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 01/22/2023] Open
Abstract
Abstract
Motivation
The discovery of protein–ligand-binding sites is a major step for elucidating protein function and for investigating new functional roles. Detecting protein–ligand-binding sites experimentally is time-consuming and expensive. Thus, a variety of in silico methods to detect and predict binding sites was proposed as they can be scalable, fast and present low cost.
Results
We proposed Graph-based Residue neighborhood Strategy to Predict binding sites (GRaSP), a novel residue centric and scalable method to predict ligand-binding site residues. It is based on a supervised learning strategy that models the residue environment as a graph at the atomic level. Results show that GRaSP made compatible or superior predictions when compared with methods described in the literature. GRaSP outperformed six other residue-centric methods, including the one considered as state-of-the-art. Also, our method achieved better results than the method from CAMEO independent assessment. GRaSP ranked second when compared with five state-of-the-art pocket-centric methods, which we consider a significant result, as it was not devised to predict pockets. Finally, our method proved scalable as it took 10–20 s on average to predict the binding site for a protein complex whereas the state-of-the-art residue-centric method takes 2–5 h on average.
Availability and implementation
The source code and datasets are available at https://github.com/charles-abreu/GRaSP.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Charles A Santana
- Department of Biochemistry and Immunology
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Sabrina de A Silveira
- Department of Computer Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
- Institute of Technological Sciences (ICT), Advanced Campus at Itabira, Universidade Federal de Itajubá, Itabira 35903-087, Brazil
| | - João P A Moraes
- Institute of Technological Sciences (ICT), Advanced Campus at Itabira, Universidade Federal de Itajubá, Itabira 35903-087, Brazil
| | - Sandro C Izidoro
- Institute of Technological Sciences (ICT), Advanced Campus at Itabira, Universidade Federal de Itajubá, Itabira 35903-087, Brazil
| | - Raquel C de Melo-Minardi
- Department of Biochemistry and Immunology
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - António J M Ribeiro
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jonathan D Tyzack
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Neera Borkakoti
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
32
|
Ding Y, Tang J, Guo F. Human protein subcellular localization identification via fuzzy model on Kernelized Neighborhood Representation. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Ao C, Zhou W, Gao L, Dong B, Yu L. Prediction of antioxidant proteins using hybrid feature representation method and random forest. Genomics 2020; 112:4666-4674. [DOI: 10.1016/j.ygeno.2020.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
|
34
|
Yu L, Shi Y, Zou Q, Wang S, Zheng L, Gao L. Exploring Drug Treatment Patterns Based on the Action of Drug and Multilayer Network Model. Int J Mol Sci 2020; 21:E5014. [PMID: 32708644 PMCID: PMC7404256 DOI: 10.3390/ijms21145014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023] Open
Abstract
Some drugs can be used to treat multiple diseases, suggesting potential patterns in drug treatment. Determination of drug treatment patterns can improve our understanding of the mechanisms of drug action, enabling drug repurposing. A drug can be associated with a multilayer tissue-specific protein-protein interaction (TSPPI) network for the diseases it is used to treat. Proteins usually interact with other proteins to achieve functions that cause diseases. Hence, studying drug treatment patterns is similar to studying common module structures in multilayer TSPPI networks. Therefore, we propose a network-based model to study the treatment patterns of drugs. The method was designated SDTP (studying drug treatment pattern) and was based on drug effects and a multilayer network model. To demonstrate the application of the SDTP method, we focused on analysis of trichostatin A (TSA) in leukemia, breast cancer, and prostate cancer. We constructed a TSPPI multilayer network and obtained candidate drug-target modules from the network. Gene ontology analysis provided insights into the significance of the drug-target modules and co-expression networks. Finally, two modules were obtained as potential treatment patterns for TSA. Through analysis of the significance, composition, and functions of the selected drug-target modules, we validated the feasibility and rationality of our proposed SDTP method for identifying drug treatment patterns. In summary, our novel approach used a multilayer network model to overcome the shortcomings of single-layer networks and combined the network with information on drug activity. Based on the discovered drug treatment patterns, we can predict the potential diseases that the drug can treat. That is, if a disease-related protein module has a similar structure, then the drug is likely to be a potential drug for the treatment of the disease.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Y.S.); (L.G.)
| | - Yayong Shi
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Y.S.); (L.G.)
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology, Chengdu 650004, China;
| | - Shuhang Wang
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Liping Zheng
- School of Computer Science and Technology, Liaocheng University, Liaocheng 252000, China;
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Y.S.); (L.G.)
| |
Collapse
|
35
|
Meng C, Zhang J, Ye X, Guo F, Zou Q. Review and comparative analysis of machine learning-based phage virion protein identification methods. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140406. [PMID: 32135196 DOI: 10.1016/j.bbapap.2020.140406] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 02/01/2023]
Abstract
Phage virion protein (PVP) identification plays key role in elucidating relationships between phages and hosts. Moreover, PVP identification can facilitate the design of related biochemical entities. Recently, several machine learning approaches have emerged for this purpose and have shown their potential capacities. In this study, the proposed PVP identifiers are systemically reviewed, and the related algorithms and tools are comprehensively analyzed. We summarized the common framework of these PVP identifiers and constructed our own novel identifiers based upon the framework. Furthermore, we focus on a performance comparison of all PVP identifiers by using a training dataset and an independent dataset. Highlighting the pros and cons of these identifiers demonstrates that g-gap DPC (dipeptide composition) features are capable of representing characteristics of PVPs. Moreover, SVM (support vector machine) is proven to be the more effective classifier to distinguish PVPs and non-PVPs.
Collapse
Affiliation(s)
- Chaolu Meng
- College of Intelligence and Computing, Tianjin University, Tianjin, China; College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Science City, Japan
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
36
|
Identification of membrane protein types via multivariate information fusion with Hilbert–Schmidt Independence Criterion. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.11.103] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Wei L, Luan S, Nagai LAE, Su R, Zou Q. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Bioinformatics 2020; 35:1326-1333. [PMID: 30239627 DOI: 10.1093/bioinformatics/bty824] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION As one of important epigenetic modifications, DNA N4-methylcytosine (4mC) is recently shown to play crucial roles in restriction-modification systems. For better understanding of their functional mechanisms, it is fundamentally important to identify 4mC modification. Machine learning methods have recently emerged as an effective and efficient approach for the high-throughput identification of 4mC sites, although high predictive error rates are still challenging for existing methods. Therefore, it is highly desirable to develop a computational method to more accurately identify m4C sites. RESULTS In this study, we propose a machine learning based predictor, namely 4mcPred-SVM, for the genome-wide detection of DNA 4mC sites. In this predictor, we present a new feature representation algorithm that sufficiently exploits sequence-based information. To improve the feature representation ability, we use a two-step feature optimization strategy, thereby obtaining the most representative features. Using the resulting features and Support Vector Machine (SVM), we adaptively train the optimal models for different species. Comparative results on benchmark datasets from six species indicate that our predictor is able to achieve generally better performance in predicting 4mC sites as compared to the state-of-the-art predictors. Importantly, the sequence-based features can reliably and robust predict 4mC sites, facilitating the discovery of potentially important sequence characteristics for the prediction of 4mC sites. AVAILABILITY AND IMPLEMENTATION The user-friendly webserver that implements the proposed 4mcPred-SVM is well established, and is freely accessible at http://server.malab.cn/4mcPred-SVM. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Leyi Wei
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Shasha Luan
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Luis Augusto Eijy Nagai
- Lab of Functional Analysis In Silico, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ran Su
- School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
38
|
Huang Q, Zhang J, Wei L, Guo F, Zou Q. 6mA-RicePred: A Method for Identifying DNA N 6-Methyladenine Sites in the Rice Genome Based on Feature Fusion. FRONTIERS IN PLANT SCIENCE 2020; 11:4. [PMID: 32076430 PMCID: PMC7006724 DOI: 10.3389/fpls.2020.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 06/01/2023]
Abstract
MOTIVATION The biological function of N 6-methyladenine DNA (6mA) in plants is largely unknown. Rice is one of the most important crops worldwide and is a model species for molecular and genetic studies. There are few methods for 6mA site recognition in the rice genome, and an effective computational method is needed. RESULTS In this paper, we propose a new computational method called 6mA-Pred to identify 6mA sites in the rice genome. 6mA-Pred employs a feature fusion method to combine advantageous features from other methods and thus obtain a new feature to identify 6mA sites. This method achieved an accuracy of 87.27% in the identification of 6mA sites with 10-fold cross-validation and achieved an accuracy of 85.6% in independent test sets.
Collapse
Affiliation(s)
- Qianfei Huang
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Leyi Wei
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
39
|
Wang C, Zhao N, Yuan L, Liu X. Computational Detection of Breast Cancer Invasiveness with DNA Methylation Biomarkers. Cells 2020; 9:E326. [PMID: 32019269 PMCID: PMC7072524 DOI: 10.3390/cells9020326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most common female malignancy. It has high mortality, primarily due to metastasis and recurrence. Patients with invasive and noninvasive breast cancer require different treatments, so there is an urgent need for predictive tools to guide clinical decision making and avoid overtreatment of noninvasive breast cancer and undertreatment of invasive cases. Here, we divided the sample set based on the genome-wide methylation distance to make full use of metastatic cancer data. Specifically, we implemented two differential methylation analysis methods to identify specific CpG sites. After effective dimensionality reduction, we constructed a methylation-based classifier using the Random Forest algorithm to categorize the primary breast cancer. We took advantage of breast cancer (BRCA) HM450 DNA methylation data and accompanying clinical data from The Cancer Genome Atlas (TCGA) database to validate the performance of the classifier. Overall, this study demonstrates DNA methylation as a potential biomarker to predict breast tumor invasiveness and as a possible parameter that could be included in the studies aiming to predict breast cancer aggressiveness. However, more comparative studies are needed to assess its usability in the clinic. Towards this, we developed a website based on these algorithms to facilitate its use in studies and predictions of breast cancer invasiveness.
Collapse
Affiliation(s)
- Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Ning Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China;
| | - Linlin Yuan
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China;
| | - Xiaoyan Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
40
|
Kumar AP, Verma CS, Lukman S. Structural dynamics and allostery of Rab proteins: strategies for drug discovery and design. Brief Bioinform 2020; 22:270-287. [PMID: 31950981 DOI: 10.1093/bib/bbz161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/29/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
Rab proteins represent the largest family of the Rab superfamily guanosine triphosphatase (GTPase). Aberrant human Rab proteins are associated with multiple diseases, including cancers and neurological disorders. Rab subfamily members display subtle conformational variations that render specificity in their physiological functions and can be targeted for subfamily-specific drug design. However, drug discovery efforts have not focused much on targeting Rab allosteric non-nucleotide binding sites which are subjected to less evolutionary pressures to be conserved, hence are likely to offer subfamily specificity and may be less prone to undesirable off-target interactions and side effects. To discover druggable allosteric binding sites, Rab structural dynamics need to be first incorporated using multiple experimentally and computationally obtained structures. The high-dimensional structural data may necessitate feature extraction methods to identify manageable representative structures for subsequent analyses. We have detailed state-of-the-art computational methods to (i) identify binding sites using data on sequence, shape, energy, etc., (ii) determine the allosteric nature of these binding sites based on structural ensembles, residue networks and correlated motions and (iii) identify small molecule binders through structure- and ligand-based virtual screening. To benefit future studies for targeting Rab allosteric sites, we herein detail a refined workflow comprising multiple available computational methods, which have been successfully used alone or in combinations. This workflow is also applicable for drug discovery efforts targeting other medically important proteins. Depending on the structural dynamics of proteins of interest, researchers can select suitable strategies for allosteric drug discovery and design, from the resources of computational methods and tools enlisted in the workflow.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Research Unit in Bioinformatics, Department of Biochemistry and Microbiology, Rhodes University, South Africa
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
41
|
Ao C, Zhang Y, Li D, Zhao Y, Zou Q. Progress in the development of antimicrobial peptide prediction tools. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-103746. [PMID: 31957609 DOI: 10.2174/1389203721666200117163802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/12/2019] [Accepted: 07/15/2019] [Indexed: 11/22/2022]
Abstract
Antimicrobial peptides (AMPs) are natural polypeptides with antimicrobial activities and are found in most organisms. AMPs are evolutionarily conservative components that belong to the innate immune system and show potent activity against bacteria, fungi, viruses and in some cases display antitumor activity. Thus, AMPs are major candidates in the development of new antibacterial reagents. In the last few decades, AMPs have attracted significant attention from the research community. During the early stages of the development of this research field, AMPs were experimentally identified, which is an expensive and time-consuming procedure. Therefore, research and development (R&D) of fast, highly efficient computational tools for predicting AMPs has enabled the rapid identification and analysis of new AMPs from a wide range of organisms. Moreover, these computational tools have allowed researchers to better understand the activities of AMPs, which has promoted R&D of antibacterial drugs. In this review, we systematically summarize AMP prediction tools and their corresponding algorithms used.
Collapse
Affiliation(s)
- Chunyan Ao
- Institute of Fundamental and Frontier Sciences - University of Electronic Science and Technology of China Chengdu. China
| | - Yu Zhang
- Department of neurosurgery - Heilongjiang Province Land Reclamation Headquarters General Hospital Harbin. China
| | - Dapeng Li
- Department of Internal Medicine-Oncology - The Fourth Hospital in Qinhuangdao Hebei. China
| | - Yuming Zhao
- Information and Computer Engineering College - Northeast Forestry University Harbin. China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences - University of Electronic Science and Technology of China Chengdu. China
| |
Collapse
|
42
|
Li Q, Dong B, Wang D, Wang S. Identification of Secreted Proteins From Malaria Protozoa With Few Features. IEEE ACCESS 2020; 8:89793-89801. [DOI: 10.1109/access.2020.2994206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
43
|
Sun S, Wang C, Ding H, Zou Q. Machine learning and its applications in plant molecular studies. Brief Funct Genomics 2019; 19:40-48. [DOI: 10.1093/bfgp/elz036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 01/16/2023] Open
Abstract
Abstract
The advent of high-throughput genomic technologies has resulted in the accumulation of massive amounts of genomic information. However, biologists are challenged with how to effectively analyze these data. Machine learning can provide tools for better and more efficient data analysis. Unfortunately, because many plant biologists are unfamiliar with machine learning, its application in plant molecular studies has been restricted to a few species and a limited set of algorithms. Thus, in this study, we provide the basic steps for developing machine learning frameworks and present a comprehensive overview of machine learning algorithms and various evaluation metrics. Furthermore, we introduce sources of important curated plant genomic data and R packages to enable plant biologists to easily and quickly apply appropriate machine learning algorithms in their research. Finally, we discuss current applications of machine learning algorithms for identifying various genes related to resistance to biotic and abiotic stress. Broad application of machine learning and the accumulation of plant sequencing data will advance plant molecular studies.
Collapse
Affiliation(s)
- Shanwen Sun
- University of Bayreuth in Germany. He is now a postdoctoral fellow at the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
| | - Chunyu Wang
- Harbin Institute of Technology in China. He is an associate professor in the School of Computer Science and Technology, Harbin Institute of Technology
| | - Hui Ding
- Inner Mongolia University in China. She is an associate professor in the Center for Informational Biology, University of Electronic Science and Technology of China
| | - Quan Zou
- Harbin Institute of Technology in China. He is a professor in the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
| |
Collapse
|
44
|
Zhao Z, Xu Y, Zhao Y. SXGBsite: Prediction of Protein-Ligand Binding Sites Using Sequence Information and Extreme Gradient Boosting. Genes (Basel) 2019; 10:E965. [PMID: 31771119 PMCID: PMC6947422 DOI: 10.3390/genes10120965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/19/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
The prediction of protein-ligand binding sites is important in drug discovery and drug design. Protein-ligand binding site prediction computational methods are inexpensive and fast compared with experimental methods. This paper proposes a new computational method, SXGBsite, which includes the synthetic minority over-sampling technique (SMOTE) and the Extreme Gradient Boosting (XGBoost). SXGBsite uses the position-specific scoring matrix discrete cosine transform (PSSM-DCT) and predicted solvent accessibility (PSA) to extract features containing sequence information. A new balanced dataset was generated by SMOTE to improve classifier performance, and a prediction model was constructed using XGBoost. The parallel computing and regularization techniques enabled high-quality and fast predictions and mitigated overfitting caused by SMOTE. An evaluation using 12 different types of ligand binding site independent test sets showed that SXGBsite performs similarly to the existing methods on eight of the independent test sets with a faster computation time. SXGBsite may be applied as a complement to biological experiments.
Collapse
Affiliation(s)
| | - Yonghong Xu
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | | |
Collapse
|
45
|
Wang W, Li K, Lv H, Zhang H, Wang S, Huang J. SmoPSI: Analysis and Prediction of Small Molecule Binding Sites Based on Protein Sequence Information. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:1926156. [PMID: 31814842 PMCID: PMC6877956 DOI: 10.1155/2019/1926156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 11/20/2022]
Abstract
The analysis and prediction of small molecule binding sites is very important for drug discovery and drug design. The traditional experimental methods for detecting small molecule binding sites are usually expensive and time consuming, and the tools for single species small molecule research are equally inefficient. In recent years, some algorithms for predicting binding sites of protein-small molecules have been developed based on the geometric and sequence characteristics of proteins. In this paper, we have proposed SmoPSI, a classification model based on the XGBoost algorithm for predicting the binding sites of small molecules, using protein sequence information. The model achieved better results with an AUC of 0.918 and an ACC of 0.913. The experimental results demonstrate that our method achieves high performances and outperforms many existing predictors. In addition, we also analyzed the binding residues and nonbinding residues and finally found the PSSM; hydrophilicity, hydrophobicity, charge, and hydrogen bonding have obviously different effects on the binding-site predictions.
Collapse
Affiliation(s)
- Wei Wang
- Department of Computer Science and Technology, College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, Henan Province, China
- Laboratory of Computation Intelligence and Information Processing, Engineering Technology Research Center for Computing Intelligence and Data Mining, 453007 Xinxiang, Henan Province, China
| | - Keliang Li
- Department of Computer Science and Technology, College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, Henan Province, China
| | - Hehe Lv
- Department of Computer Science and Technology, College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, Henan Province, China
| | - Hongjun Zhang
- School of Aviation Engineering, Anyang University, 455000 Anyang, Henan Province, China
| | - Shixun Wang
- Department of Computer Science and Technology, College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, Henan Province, China
| | - Junwei Huang
- Department of Computer Science and Technology, College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, Henan Province, China
| |
Collapse
|
46
|
Ding Y, Tang J, Guo F. Identification of Drug-Side Effect Association via Semisupervised Model and Multiple Kernel Learning. IEEE J Biomed Health Inform 2019; 23:2619-2632. [DOI: 10.1109/jbhi.2018.2883834] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Meng C, Wei L, Zou Q. SecProMTB: Support Vector Machine‐Based Classifier for Secretory Proteins Using Imbalanced Data Sets Applied toMycobacterium tuberculosis. Proteomics 2019; 19:e1900007. [DOI: 10.1002/pmic.201900007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Chaolu Meng
- College of Intelligence and ComputingTianjin University 300350 Tianjin China
- College of Computer and Information EngineeringInner Mongolia Agricultural University 010018 Hohhot China
| | - Leyi Wei
- College of Intelligence and ComputingTianjin University 300350 Tianjin China
| | - Quan Zou
- College of Intelligence and ComputingTianjin University 300350 Tianjin China
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China 610054 Chengdu China
- Center for Informational BiologyUniversity of Electronic Science and Technology of China 610054 Chengdu China
| |
Collapse
|
48
|
Su R, Wu H, Xu B, Liu X, Wei L. Developing a Multi-Dose Computational Model for Drug-Induced Hepatotoxicity Prediction Based on Toxicogenomics Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1231-1239. [PMID: 30040651 DOI: 10.1109/tcbb.2018.2858756] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drug-induced hepatotoxicity may cause acute and chronic liver disease, leading to great concern for patient safety. It is also one of the main reasons for drug withdrawal from the market. Toxicogenomics data has been widely used in hepatotoxicity prediction. In our study, we proposed a multi-dose computational model to predict the drug-induced hepatotoxicity based on gene expression and toxicity data. The dose/concentration information after drug treatment is fully utilized in our study based on the dose-response curve, thus a more informative representative of the dose-response relationship is considered. We also proposed a new feature selection method, named MEMO, which is also one important aspect of our multi-dose model in our study, to deal with the high-dimensional toxicogenomics data. We validated the proposed model using the TG-GATEs, which is a large database recording toxicogenomics data from multiple views. The experimental results show that the drug-induced hepatotoxicity can be predicted with high accuracy and efficiency using the proposed predictive model.
Collapse
|
49
|
Xuan P, Sun C, Zhang T, Ye Y, Shen T, Dong Y. Gradient Boosting Decision Tree-Based Method for Predicting Interactions Between Target Genes and Drugs. Front Genet 2019; 10:459. [PMID: 31214240 PMCID: PMC6555260 DOI: 10.3389/fgene.2019.00459] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/30/2019] [Indexed: 02/01/2023] Open
Abstract
Determining the target genes that interact with drugs—drug–target interactions—plays an important role in drug discovery. Identification of drug–target interactions through biological experiments is time consuming, laborious, and costly. Therefore, using computational approaches to predict candidate targets is a good way to reduce the cost of wet-lab experiments. However, the known interactions (positive samples) and the unknown interactions (negative samples) display a serious class imbalance, which has an adverse effect on the accuracy of the prediction results. To mitigate the impact of class imbalance and completely exploit the negative samples, we proposed a new method, named DTIGBDT, based on gradient boosting decision trees, for predicting candidate drug–target interactions. We constructed a drug–target heterogeneous network that contains the drug similarities based on the chemical structures of drugs, the target similarities based on target sequences, and the known drug–target interactions. The topological information of the network was captured by random walks to update the similarities between drugs or targets. The paths between drugs and targets could be divided into multiple categories, and the features of each category of paths were extracted. We constructed a prediction model based on gradient boosting decision trees. The model establishes multiple decision trees with the extracted features and obtains the interaction scores between drugs and targets. DTIGBDT is a method of ensemble learning, and it effectively reduces the impact of class imbalance. The experimental results indicate that DTIGBDT outperforms several state-of-the-art methods for drug–target interaction prediction. In addition, case studies on Quetiapine, Clozapine, Olanzapine, Aripiprazole, and Ziprasidone demonstrate the ability of DTIGBDT to discover potential drug–target interactions.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Chang Sun
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin, China
| | - Yilin Ye
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tonghui Shen
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Yihua Dong
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| |
Collapse
|
50
|
Han K, Wang M, Zhang L, Wang Y, Guo M, Zhao M, Zhao Q, Zhang Y, Zeng N, Wang C. Predicting Ion Channels Genes and Their Types With Machine Learning Techniques. Front Genet 2019; 10:399. [PMID: 31130983 PMCID: PMC6510169 DOI: 10.3389/fgene.2019.00399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 02/01/2023] Open
Abstract
Motivation: The number of ion channels is increasing rapidly. As many of them are associated with diseases, they are the targets of more than 700 drugs. The discovery of new ion channels is facilitated by computational methods that predict ion channels and their types from protein sequences. Methods: We used the SVMProt and the k-skip-n-gram methods to extract the feature vectors of ion channels, and obtained 188- and 400-dimensional features, respectively. The 188- and 400-dimensional features were combined to obtain 588-dimensional features. We then employed the maximum-relevance-maximum-distance method to reduce the dimensions of the 588-dimensional features. Finally, the support vector machine and random forest methods were used to build the prediction models to evaluate the classification effect. Results: Different methods were employed to extract various feature vectors, and after effective dimensionality reduction, different classifiers were used to classify the ion channels. We extracted the ion channel data from the Universal Protein Resource (UniProt, http://www.uniprot.org/) and Ligand-Gated Ion Channel databases (http://www.ebi.ac.uk/compneur-srv/LGICdb/LGICdb.php), and then verified the performance of the classifiers after screening. The findings of this study could inform the research and development of drugs.
Collapse
Affiliation(s)
- Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, China
| | - Miao Wang
- Life Sciences and Environmental Sciences Development Center, Harbin University of Commerce, Harbin, China
| | - Lei Zhang
- Life Sciences and Environmental Sciences Development Center, Harbin University of Commerce, Harbin, China
| | - Ying Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Zhao
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, China
| | - Qian Zhao
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, China
| | - Yu Zhang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, China
| | - Nianyin Zeng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|