1
|
Ekawa B, Diogo HP, Castro RAE, Caires FJ, Eusébio MES. Coamorphous Systems of Valsartan: Thermal Analysis Contribution to Evaluate Intermolecular Interactions Effects on the Structural Relaxation. Molecules 2023; 28:6240. [PMID: 37687071 PMCID: PMC10488875 DOI: 10.3390/molecules28176240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Coamorphous formation in binary systems of valsartan (Val) with 4,4'-bipyridine (Bipy) and trimethoprim (Tri) was investigated for mixtures with a mole fraction of 0.16~0.86 of valsartan and evaluated in terms of the glass transition temperature. The glass transition of the systems had a behavior outside the values predicted by the Gordon-Taylor equation, showing that Val-Bipy (hydrogen bonding between the components) had a lower deviation and Val-Tri (ionic bonding between the components) had a higher deviation. Mixtures of compositions 2:1 Val-Bipy and 1:1 Val-Tri were selected for further investigation and verified to be stable, as no crystallization was observed during subsequent heating and cooling programs. For these systems, the effective activation energy during glass transition was evaluated. Compared to pure valsartan, the system with the lower glass transition temperature (Val-Bipy) presented the highest effective activation energy, and the system with the higher glass transition temperature (Val-Tri) presented a lower effective activation energy. The results presented a good correlation between the data obtained from two different techniques to determine the fragility and effective activation energy: non-isothermal kinetic analysis by DSC and TSDC.
Collapse
Affiliation(s)
- Bruno Ekawa
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14801-970, Brazil;
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Hermínio P. Diogo
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Ricardo A. E. Castro
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Flávio J. Caires
- School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil
| | - M. Ermelinda S. Eusébio
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| |
Collapse
|
2
|
Jovanović JĐ, Antonijević M, Vojinović R, Filipović ND, Marković Z. In silico study of inhibitory capacity of sacubitril/valsartan toward neprilysin and angiotensin receptor. RSC Adv 2022; 12:29719-29726. [PMID: 36321085 PMCID: PMC9575392 DOI: 10.1039/d2ra04226f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Heart failure (HF) is a life-threatening condition that occurs when the heart cannot pump enough blood and oxygen to meet the body's needs. It affects mostly the elderly, commonly from the male population, especially those with obesity, diabetes, or some other chronic condition. It can be treated with different medications, and promising results were shown by a relatively new medicament called Entresto. Results obtained from molecular docking and molecular dynamics simulations to examine the inhibitory capacity of Entresto are presented in this study. Parameters obtained by the molecular docking simulations show that both parts of Entresto (sacubitril (SAC) and valsartan (VAL)) interact with targeted proteins, and inhibit their physiological function. Simulations of molecular dynamics revealed some interesting inhibitory patterns. SAC was discovered to produce structural alterations in neprilysin by binding to it, reducing neprilysin's physiological activity. In addition to blocking the active site, SAC binding causes the enzyme's structure to become less compact over time, causing changes in its biochemical characteristics and preventing the enzyme from performing its biological function. Similar to SAC, VAL also causes deviations in the structure of angiotensin receptors. The angiotensin receptor GPCR (G-protein-coupled receptors) is immersed in the lipid bilayer, and changes in the tertiary structure are only visible through RMSD and RMSF, not by examining R g. In this regard, MD simulations validated the results of molecular docking simulations, demonstrating that both SAC and VAL had inhibitory potential towards the neprilysin and angiotensin receptors, respectively.
Collapse
Affiliation(s)
- Jelena Đorović Jovanović
- Department of Science, Institute for Information Technologies, University of Kragujevac Jovana Cvijića bb 34000 Kragujevac Republic of Serbia
| | - Marko Antonijević
- Department of Science, Institute for Information Technologies, University of Kragujevac Jovana Cvijića bb 34000 Kragujevac Republic of Serbia
| | - Radiša Vojinović
- Faculty of Medical Sciences, University of Kragujevac Svetozara Markovića 69 34000 Kragujevc Republic of Serbia
| | - Nenad D Filipović
- Faculty of Engineering, University of Kragujevac Sestre Janjić 6 34000 Kragujevac Republic of Serbia
| | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac Jovana Cvijića bb 34000 Kragujevac Republic of Serbia
| |
Collapse
|
3
|
Wang L, Wang L, Yan F. Understanding the molecular mechanism of endothelin ETA receptor selecting isopeptides endothelin-1 and -3. Biophys J 2022; 121:2490-2502. [DOI: 10.1016/j.bpj.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/02/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022] Open
|
4
|
Munjal A, Khandia R, Paladhi S, Pandey M, Parihar A, Pathe C, Rajukumar K, Bin Emran T, Alqahtani T, Alqahtani AM, Alamri AH, Chidambara K, Dhama K. Evaluating the Effects of Hypotensive Drug Valsartan on Angiogenesis and Associated Breast Ductal Carcinoma Cell Metastasis. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.817.825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Espinosa-Barrera PA, Delgado-Vargas CA, Martínez-Pachón D, Moncayo-Lasso A. Using computer tools for the evaluation of biodegradability, toxicity, and activity on the AT1 receptor of degradation products identified in the removal of valsartan by using photo-electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23984-23994. [PMID: 33405147 DOI: 10.1007/s11356-020-11949-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This work deals with the theoretical approach of biodegradability, lipophilicity, and physiological activity of VAL and four degradation products (DPs) detected after 20 min of the photo-electro-Fenton (PEF) process. The biodegradability calculation, taking into account the change in the theoretical oxygen demand, showed that the four DPs had a more negative value than VAL, indicating that they are more susceptible to oxidation. However, these results do not imply more accessible biotransformation pathways than VAL, as observed using the EAWAG-BBD program, through which neutral biotransformation pathway prediction for VAL and DPs was made. Subsequently, by calculating the theoretical lipophilicity of the molecules (log P), the theoretical toxicity of the DPs was proposed, where the DPs had log P values between 1 and 3, lower values than those of VAL (log P = 4), indicating that DPs could be less toxic than the original compound (VAL). Both results suggest that VAL degradation (by photo-electro-Fenton process proposed) yields a positive effect on the environment. Finally, when molecular dynamic simulations were carried out, it was observed that DP1, DP2, and DP3 maintained similar interactions to those of VAL with the binding site of the AT1R. DP4 did not show any interaction. These results indicated that, despite the presence of DPs, generated after 20 min of the treatment, they could not exert a physiological activity in any organism the same way that does VAL.
Collapse
Affiliation(s)
- Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia
| | - Carlos Andrés Delgado-Vargas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia.
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia.
| |
Collapse
|
6
|
Chontzopoulou E, Tzakos AG, Mavromoustakos T. On the Rational Drug Design for Hypertension through NMR Spectroscopy. Molecules 2020; 26:E12. [PMID: 33375119 PMCID: PMC7792925 DOI: 10.3390/molecules26010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Antagonists of the AT1receptor (AT1R) are beneficial molecules that can prevent the peptide hormone angiotensin II from binding and activating the specific receptor causing hypertension in pathological states. This review article summarizes the multifaced applications of solid and liquid state high resolution nuclear magnetic resonance (NMR) spectroscopy in antihypertensive commercial drugs that act as AT1R antagonists. The 3D architecture of these compounds is explored through 2D NOESY spectroscopy and their interactions with micelles and lipid bilayers are described using solid state 13CP/MAS, 31P and 2H static solid state NMR spectroscopy. Due to their hydrophobic character, AT1R antagonists do not exert their optimum profile on the AT1R. Therefore, various vehicles are explored so as to effectively deliver these molecules to the site of action and to enhance their pharmaceutical efficacy. Cyclodextrins and polymers comprise successful examples of effective drug delivery vehicles, widely used for the delivery of hydrophobic drugs to the active site of the receptor. High resolution NMR spectroscopy provides valuable information on the physical-chemical forces that govern these drug:vehicle interactions, knowledge required to get a deeper understanding on the stability of the formed complexes and therefore the appropriateness and usefulness of the drug delivery system. In addition, it provides valuable information on the rational design towards the synthesis of more stable and efficient drug formulations.
Collapse
Affiliation(s)
- Eleni Chontzopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| |
Collapse
|
7
|
Kiriakidi S, Chatzigiannis C, Papaemmanouil C, Tzakos AG, Mavromoustakos T. Exploring the role of the membrane bilayer in the recognition of candesartan by its GPCR AT1 receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183142. [PMID: 31830465 DOI: 10.1016/j.bbamem.2019.183142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases and hypertension in particular are major health risks worldwide and the improvement on their treatment will be beneficial for the human health. AT1R antagonists belong to the sartans family that targets the renin-angiotensin aldosterone system (RAAS) through blocking the hormone angiotensin II to exert its detrimental effects in pathological states. As a consequence, they are beneficial to treat hypertension, diabetes related kidney failure and hyperaemic episodes. Long unbiased Molecular Dynamics (MD) simulations are performed in order to explore candesartan's possible 2D and 3D diffusion mechanisms towards AT1R receptor. 3D diffusion mechanism is referred to the direct binding of the AT1 antagonist candesartan to the AT1R 3D structure (PDB ID: 4YAY). 2D diffusion mechanism involves first, the incorporation of candesartan in the bilayer core and then its localization on the AT1R binding cavity, through a diffusion mechanism. The obtained results indicate that membranes interact significantly with the neutral form of candesartan, which is indeed approaching the receptors' active site through diffusion via the lipids. On the other hand, the deprotonated form of the drug is interacting with AT1R's extracellular loop and fails to enter the membrane, pointing out the importance of the pH microenvironment around the receptor. To validate the calculated diffusion coefficients of the drug in the lipid bilayers 2D DOSY NMR experiments were recorded and they were in good agreement. Information on the impact that has the interaction of candesartan with the membrane is very important for the rationally design and development of potent ARBs. Thus, its conformational features as well as its localization in the membrane core have to be thoroughly explored.
Collapse
Affiliation(s)
- Sofia Kiriakidi
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
| | - Christos Chatzigiannis
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Christina Papaemmanouil
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Thomas Mavromoustakos
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece.
| |
Collapse
|