1
|
Wu T, Wei W, Gao C, Wu J, Gao C, Chen X, Liu L, Song W. Synthesis of C-N bonds by nicotinamide-dependent oxidoreductase: an overview. Crit Rev Biotechnol 2025; 45:702-726. [PMID: 39229892 DOI: 10.1080/07388551.2024.2390082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 09/05/2024]
Abstract
Compounds containing chiral C-N bonds play a vital role in the composition of biologically active natural products and small pharmaceutical molecules. Therefore, the development of efficient and convenient methods for synthesizing compounds containing chiral C-N bonds is a crucial area of research. Nicotinamide-dependent oxidoreductases (NDOs) emerge as promising biocatalysts for asymmetric synthesis of chiral C-N bonds due to their mild reaction conditions, exceptional stereoselectivity, high atom economy, and environmentally friendly nature. This review aims to present the structural characteristics and catalytic mechanisms of various NDOs, including imine reductases/ketimine reductases, reductive aminases, EneIRED, and amino acid dehydrogenases. Additionally, the review highlights protein engineering strategies employed to modify the stereoselectivity, substrate specificity, and cofactor preference of NDOs. Furthermore, the applications of NDOs in synthesizing essential medicinal chemicals, such as noncanonical amino acids and chiral amine compounds, are extensively examined. Finally, the review outlines future perspectives by addressing challenges and discussing the potential of utilizing NDOs to establish efficient biosynthesis platforms for C-N bond synthesis. In conclusion, NDOs provide an economical, efficient, and environmentally friendly toolbox for asymmetric synthesis of C-N bonds, thus contributing significantly to the field of pharmaceutical chemical development.
Collapse
Affiliation(s)
- Tianfu Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Yuan K, Huo Z, Zhang YN, Guo Z, Chang Y, Jin Y, Gao L, Zhang T, Li Y, Ma Q, Gao X. Enhancing the amination activity of meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum by modifying the crucial residue His154 for deamination. J Biotechnol 2024; 393:1-6. [PMID: 39032700 DOI: 10.1016/j.jbiotec.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
During the deamination and amination processes of meso-diaminopimelate dehydrogenase (meso-DAPDH) from Symbiobacterium thermophilum (StDAPDH), residue R71 was observed to display distinct functions. H154 has been proposed as a basic residue that facilitates water molecules to attack the D-chiral carbon of meso-DAP during deamination. Inspired by the phenomenon of R71, the effects of H154 during deamination and amination were investigated in this study with the goal of enhancing the amination activities of StDAPDH. Single site saturation mutagenesis indicated that almost all of the H154 mutants completely lost their deamination activity towards meso-DAP. However, some H154 variants showed enhanced kcat/Km values towards pyruvic acid and other bulky 2-keto acids, such as 2-oxovaleric acid, 4-methyl-2-oxopentanoic acid, 2-ketobutyric acid, and 3-methyl-2-oxobutanoic acid. When combined with the previously reported W121L/H227I mutant, triple mutants with significantly improved kcat/Km values (2.4-, 2.5-, 2.5-, and 4.0-fold) towards these 2-keto acids were obtained. Despite previous attempts, mutations at the H154 site did not yield the desired results. Moreover, this study not only recognizes the distinctive impact of H154 on both the deamination and amination reactions, but also provides guidance for further high-throughput screening in protein engineering and understanding the catalytic mechanism of StDAPDH.
Collapse
Affiliation(s)
- Kehao Yuan
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Zongchao Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ya Ning Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Zuran Guo
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yucan Chang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yunming Jin
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Lining Gao
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Tong Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qinyuan Ma
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China; Joint Institute of Synthetic Biology and Engineering Biotechnology, Shandong University of Technology and JINCHENG PHARMA, Zibo 255000, China
| | - Xiuzhen Gao
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
3
|
Wu T, Chen Y, Wei W, Song W, Wu J, Wen J, Hu G, Li X, Gao C, Chen X, Liu L. Mechanism-Guided Computational Design Drives meso-Diaminopimelate Dehydrogenase to Efficient Synthesis of Aromatic d-amino Acids. ACS Synth Biol 2024; 13:1879-1892. [PMID: 38847341 DOI: 10.1021/acssynbio.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Aromatic d-amino acids (d-AAs) play a pivotal role as important chiral building blocks and key intermediates in fine chemical and drug synthesis. Meso-diaminopimelate dehydrogenase (DAPDH) serves as an excellent biocatalyst in the synthesis of d-AAs and their derivatives. However, its strict substrate specificity and the lack of efficient engineering methods have hindered its widespread application. Therefore, this study aims to elucidate the catalytic mechanism underlying DAPDH from Proteus vulgaris (PvDAPDH) through the examination of its crystallographic structure, computational simulations of potential energies and molecular dynamics simulations, and site-directed mutagenesis. Mechanism-guided computational design showed that the optimal mutant PvDAPDH-M3 increased specific activity and catalytic efficiency (kcat/Km) for aromatic keto acids up to 124-fold and 92.4-fold, respectively, compared to that of the wild type. Additionally, it expanded the substrate scope to 10 aromatic keto acid substrates. Finally, six high-value-added aromatic d-AAs and their derivatives were synthesized using a one-pot three-enzyme cascade reaction, exhibiting a good conversion rate ranging from 32 to 84% and excellent stereoselectivity (enantiomeric excess >99%). These findings provide a potential synthetic pathway for the green industrial production of aromatic d-AAs.
Collapse
Affiliation(s)
- Tianfu Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yihan Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Wang F, Qi H, Li H, Ma X, Gao X, Li C, Lu F, Mao S, Qin HM. State-of-the-art strategies and research advances for the biosynthesis of D-amino acids. Crit Rev Biotechnol 2024; 44:495-513. [PMID: 37160372 DOI: 10.1080/07388551.2023.2193861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 05/11/2023]
Abstract
D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.
Collapse
Affiliation(s)
- Fenghua Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hongbin Qi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Huimin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xuanzhen Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xin Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Shuhong Mao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hui-Min Qin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
5
|
Tan Y, Gao C, Song W, Wei W, Liu J, Gao C, Guo L, Chen X, Liu L, Wu J. Rational Design of Meso-Diaminopimelate Dehydrogenase with Enhanced Reductive Amination Activity for Efficient Production of d- p-Hydroxyphenylglycine. Appl Environ Microbiol 2023; 89:e0010923. [PMID: 37070978 PMCID: PMC10231207 DOI: 10.1128/aem.00109-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023] Open
Abstract
d-p-hydroxyphenylglycine (d-HPG) is an important intermediate in the pharmaceutical industry. In this study, a tri-enzyme cascade for the production of d-HPG from l-HPG was designed. However, the amination activity of Prevotella timonensis meso-diaminopimelate dehydrogenase (PtDAPDH) toward 4-hydroxyphenylglyoxylate (HPGA) was identified as the rate-limiting step. To overcome this issue, the crystal structure of PtDAPDH was solved, and a "binding pocket and conformation remodeling" strategy was developed to improve the catalytic activity toward HPGA. The best variant obtained, PtDAPDHM4, exhibited a catalytic efficiency (kcat/Km) that was 26.75-fold higher than that of the wild type. This improvement was due to the enlarged substrate-binding pocket and enhanced hydrogen bond networks around the active center; meanwhile, the increased number of interdomain residue interactions drove the conformation distribution toward the closed state. Under optimal transformation conditions, PtDAPDHM4 produced 19.8 g/L d-HPG from 40 g/L racemate DL-HPG in a 3 L fermenter within 10 h, with 49.5% conversion and >99% enantiomeric excess. Our study provides an efficient three-enzyme cascade pathway for the industrial production of d-HPG from racemate DL-HPG. IMPORTANCE d-p-hydroxyphenylglycine (d-HPG) is an important intermediate in the synthesis of antimicrobial compounds. d-HPG is mainly produced via chemical and enzymatic approaches, and enzymatic asymmetric amination employing diaminopimelate dehydrogenase (DAPDH) is considered an attractive method. However, the low catalytic activity of DAPDH toward bulky 2-keto acids limits its applications. In this study, we identified a DAPDH from Prevotella timonensis and created a mutant, PtDAPDHM4, which exhibited a catalytic efficiency (kcat/Km) toward 4-hydroxyphenylglyoxylate that was 26.75-fold higher than that of the wild type. The novel strategy developed in this study has practical value for the production of d-HPG from inexpensive racemate DL-HPG.
Collapse
Affiliation(s)
- Yang Tan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Ma Q, Wang X, Luan F, Han P, Zheng X, Yin Y, Zhang X, Zhang Y, Gao X. Functional Studies on an Indel Loop between the Subtypes of meso-Diaminopimelate Dehydrogenase. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qinyuan Ma
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xiaoxiao Wang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Fang Luan
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Ping Han
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xue Zheng
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yanmiao Yin
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xianghe Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yàning Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xiuzhen Gao
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
7
|
Zwitterionic peptides encircling-assisted enhanced catalytic performance of lysine decarboxylase for cadaverine biotransformation and mechanism analyses. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Tan X, Zhang S, Song W, Liu J, Gao C, Chen X, Liu L, Wu J. A multi-enzyme cascade for efficient production of D-p-hydroxyphenylglycine from L-tyrosine. BIORESOUR BIOPROCESS 2021; 8:41. [PMID: 38650231 PMCID: PMC10991500 DOI: 10.1186/s40643-021-00394-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 11/10/2022] Open
Abstract
In this study, a four-enzyme cascade pathway was developed and reconstructed in vivo for the production of D-p-hydroxyphenylglycine (D-HPG), a valuable intermediate used to produce β-lactam antibiotics and in fine-chemical synthesis, from L-tyrosine. In this pathway, catalytic conversion of the intermediate 4-hydroxyphenylglyoxalate by meso-diaminopimelate dehydrogenase from Corynebacterium glutamicum (CgDAPDH) was identified as the rate-limiting step, followed by application of a mechanism-guided "conformation rotation" strategy to decrease the hydride-transfer distance d(C6HDAP-C4NNADP) and increase CgDAPDH activity. Introduction of the best variant generated by protein engineering (CgDAPDHBC621/D120S/W144S/I169P with 5.32 ± 0.85 U·mg-1 specific activity) into the designed pathway resulted in a D-HPG titer of 42.69 g/L from 50-g/L L-tyrosine in 24 h, with 92.5% conversion, 71.5% isolated yield, and > 99% enantiomeric excess in a 3-L fermenter. This four-enzyme cascade provides an efficient enzymatic approach for the industrial production of D-HPG from cheap amino acids.
Collapse
Affiliation(s)
- Xu Tan
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Sheng Zhang
- Zhejiang Tianrui Chemical Co., Ltd, Quzhou, 324400, China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
9
|
Altered Cofactor Preference of Thermostable StDAPDH by a Single Mutation at K159. Int J Mol Sci 2020; 21:ijms21051788. [PMID: 32150965 PMCID: PMC7084900 DOI: 10.3390/ijms21051788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/16/2022] Open
Abstract
D-amino acid production from 2-keto acid by reductive amination is an attractive pathway because of its high yield and environmental safety. StDAPDH, a meso-diaminopimelate dehydrogenase (meso-DAPDH) from Symbiobacterium thermophilum, was the first meso-DAPDH to show amination of 2-keto acids. Furthermore, StDAPDH shows excellent thermostability compared to other meso-DAPDHs. However, the cofactor of StDAPDH is NADP(H), which is less common than NAD(H) in industrial applications. Therefore, cofactor engineering for StDAPDH is needed. In this study, the highly conserved cofactor binding sites around the adenosine moiety of NADPH were targeted to determine cofactor specificity. Lysine residues within a loop were found to be critical for the cofactor specificity of StDAPDH. Replacement of lysine with arginine resulted in the activity of pyruvic acid with NADH as the cofactor. The affinity of K159R to pyruvic acid was equal with NADH or NADPH as the cofactor, regardless of the mutation. Molecular dynamics simulations revealed that the large steric hindrance of arginine and the interaction of the salt bridge between NADH and arginine may have restricted the free movement of NADH, which prompted the formation of a stable active conformation of mutant K159R. These results provide further understanding of the catalytic mechanism of StDAPDH and guidance for the cofactor engineering of StDAPDH.
Collapse
|
10
|
Wahab HA, Amaro RE, Cournia Z. A Celebration of Women in Computational Chemistry. J Chem Inf Model 2019; 59:1683-1692. [DOI: 10.1021/acs.jcim.9b00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, 3234 Urey Hall, #0340, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|